
THE PRISMATIZATION OF p-ADIC FORMAL SCHEMES

BHARGAV BHATT AND JACOB LURIE

Abstract. In this note, we introduce and study the Cartier–Witt stack WCartX attached to a p-adic formal
scheme X as well as some variants. In particular, we reinterpret the notion of prismatic crystals on X and
their cohomology in terms of quasicoherent sheaf theory on WCartX in favorable situations.
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This document is a postscript to [2]. In particular, the introduction below should be read in conjunction
with that of [2]. Moreover, this document is a preliminary version, and we hope to revisit and expand on
the exposition in the future. In particular, the definition and basic properties of the key object of this study
in this paper — the prismatization WCartX of a bounded p-adic formal schemeX — rely critically on the
notion of mapping spaces provided by derived p-adic formal geometry, and some of our arguments rely on a
working theory of derived formal δ-schemes; neither of these theories has been systematically documented
in the literature yet as far as we know.

References to [2] in this paper have the form APC.x.y.z.

1. Introduction

In §APC.3 , we constructed the Cartier–Witt stack WCart as a functor on p-nilpotent rings; one of the
essential features of this construction was the equivalence between quasi-coherent complexes on WCart
and crystals of (p, I)-complete complexes on the absolute prismatic site Spf(Zp)� of Spf(Zp) (Proposi-
tion APC.3.3.5 ), allowing us to simultaneously localize the study of such crystals on the stack WCart and
also to understand the stack WCart via prisms. In this paper, our goal is to extend this picture to bounded
p-adic formal schemes X : we shall attach a stack WCartX to such a formal scheme X with the property
that the quasi-coherent sheaves on WCartX correspond to prismatic crystals under mild assumptions, and
that this correspondence is compatible with derived pushforward under mild assumptions. The format of
such a theory is also explained in [8, §1.1].

More precisely, in §3, we introduce the Cartier–Witt stack WCartX (as a stack on p-nilpotent rings)
for a bounded p-adic formal scheme X . Its construction is functorial in X , and its definition relies on
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a small amount of derived algebraic geometry; the relevant animated rings are best understood in terms
of animated prisms, which are introduced in §2 (building on a theory of animated δ-rings we discuss in
Appendix A). When X = Spf(Zp), we have WCartX = WCart, essentially by definition; on the other
hand, ifX = Spf(R) for a perfectoid ringR, we have WCartX = Spf(A), where (A, I) is the perfect prism
attached toR (Example 3.12). In fact, in general, the Cartier–Witt WCartX is closely related to the absolute
prismatic site X� of X (Construction 3.10); using this connection for X = Gm, in §4, we reinterpret the
results on the prismatic logarithm from §APC.2 in terms of a group scheme GWCart constructed from
WCartGm .

One can study the stack WCartX via the map WCartX → WCart coming from functoriality. As
WCart can be probed using prisms via Construction APC.3.2.4 , we are therefore led to study the stacks
WCartX ×WCart,ρASpf(A), where (A, I) is a bounded prism, and ρA : Spf(A) → WCart is the map from
Construction APC.3.2.4 . These fibre products turn out to depend only on the A-scheme XA. Thus, in §5,
we study relative Cartier–Witt stacks WCartY /A attached to a bounded prism (A, I) and a bounded p-adic
formal A-scheme Y . These stacks geometrize the study of relative prismatic cohomology: under certain
syntomicity assumptions on Y /A, quasi-coherent complexes on WCartY /A identify with crystals of (p, I)-
complete complexes on the relative prismatic site (Y /A)�, and thus theO-cohomology R�(WCartY /A,O)
computes the site-theoretic relative prismatic cohomology R�site� (Y /A) (Theorems 6.5 and 6.4, and Re-
mark 7.23).

Remark 1.1. Given a bounded prism (A, I) and a p-completely smooth A-algebra R, one of the key foun-
dational results on prismatic cohomology is the Hodge-Tate comparison [3], which gives an isomorphism
H∗(�R/A) ' ∧∗Ω1

R/A
{−1} of graded commutative R-algebras. From the stacky perspective, this isomor-

phism has a natural explanation. Namely, the Hodge-Tate stack WCartHT
Spf(R)/A → Spf(R) is a gerbe banded

by the flatR-group scheme TSpf(R)/A{1}] given by the PD-hull of the 0 section in the Breuil-Kisin twisted
tangent bundle TSpf(R)/A{1}; moreover, this gerbe is split by the choice of (p, I)-completely smooth δ-A-
algebra R̃ liftingR (Proposition 5.12). This description implies the Hodge-Tate comparison by linear alge-
bra (Remark 7.7). Moreover, the proof that WCartHT

Spf(R)/A → Spf(R) is gerbe is itself quite conceptually
straightforward from derived deformation theory. In contrast, the proof of the Hodge-Tate comparison in
[3] involved an artificial (in hindsight) reduction to the Cartier isomorphism via the crystalline comparison
theorem.

To obtain stronger results as well as a better understanding, it turns out to be quite convenient to extend
the preceding constructions more fully to derived algebraic geometry. Thus, given a bounded prism (A, I)
and a derived p-adic formal scheme Y /A, we construct a stack WCartY /A on derived affine schemes over
Spf(A) in §7; if Y is classical and we restrict the stack to classical affines, we recover the construction
discussed above. However, even when Y is classical, the derived stack WCartY /A is not necessarily classical
(Warning 7.4), and this is in fact a feature: the coherent cohomology R�(WCartY /A,O) agrees with the
derived prismatic cohomology R��(Y /A) under quite mild assumptions on Y /A (Theorem 7.20 (1)).

The results discussed in the previous paragraph concern the relative theory. In §8, we record their abso-
lute counterparts. More precisely, to any derived p-adic formal schemeX , we attach a stack on p-nilpotent
animated rings called the the Cartier–Witt stack WCartX (Definition 8.6); if the derived formal scheme
X is in fact a classical bounded p-adic formal scheme Xcl, then the restriction of WCartX to discrete p-
nilpotent rings agrees with the stack WCartXcl studied in §3, so one can regard WCartX as a natural ex-
tension of WCartXcl to derived algebraic geometry. If one further imposes syntomicity assumptions, then
WCartX is classical (Corollary 8.13), the theory of quasi-coherent sheaves on WCartX is equivalent to the
theory of crystals on the absolute prismatic site ofX (Proposition 8.15), and this equivalence is compatible
with pushforwards under relatively mild assumptions (Proposition 8.16).

Remark 1.2. Most of the results in [2] apply either to bounded p-adic formal schemes or all p-complete
animated rings. From the perspective of derived formal algebraic geometry, one can explain this somewhat
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curious juxtaposition: the construction that regards a p-complete discrete ring R with bounded p-power
torsion as a p-complete animated ring extends naturally to a fully faithful embedding of bounded p-adic
formal schemes into derived p-adic formal schemes that preserves and reflects the notion of open immer-
sions. On the other hand, without the boundedness constraints, the notion of open immersions in classical
formal geometry is somewhat pathological due to poor behaviour of classical completions; in particular, it
may disagree with its derived counterpart.

Recall that one may heuristically view the prismatic formalism as an attempt at capturing geometry “over
F1”. Under this heuristic, the absolute Hodge–Tate cohomology �R of a ring R is a variant of its Hodge
cohomology “over F1”. In conjunction with the heuristic that regular rings ought to be smooth “over F1”,
this suggests that the absolute Hodge–Tate stack WCartHT

X ⊂WCartX should be well-behaved when X is
regular. We verify some concrete predictions of this reasoning in §9, and end with some precise questions
§10.

Warning 1.3. We have adopted to use the same notation for the Cartier–Witt stack in two situations:
(1) IfX is a bounded p-adic formal scheme, then WCartX denotes a presheaf on p-nilpotent rings; this

is the subject of §3 and §4.
(2) If Y is a derived p-adic formal scheme, then WCartY denotes a presheaf on p-nilpotent animated

rings; this is the subject of §8.
These notations are compatible in the following sense: given X as in (1), if Y denotes the corresponding
derived formal scheme, then the restriction on WCartY to p-nilpotent rings agrees with WCartY . On the
other hand, with the same choice of X and Y , it is not always true that WCartY agrees with the natural
extension of WCartX to a presheaf on p-nilpotent animated rings, even after sheafification (Warning 8.7):
such agreement typically only holds under syntomicity assumptions. In case of disagreement, we view
WCartY as the more fundamental object (e.g., it is closely related to derived prismatic cohomology via
Corollary 8.17). Similar remarks apply in the relative case as well; the analog of (1) is the subject of §5 and
§6, while the analog of (2) is studied in §7.
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2. Animated prisms

In this section, we extend the notion of prisms and their basic properties to the animated setting; we shall
eventually use this in §8 to extend the notion of Cartier–Witt divisors from Definition APC.3.1.1 to the
animated setting. One flexibility offered by the notion of animated prisms over that of classical prisms is
that one can base change such a structure along essentially arbitrary maps of animated δ-rings (Remark 2.8).

The starting point is the observation that the notion of generalized Cartier divisors works quite well in
the animated setting; in particular, there is a reasonable notion of a “quotient” of an animated ringA by an
invertible “ideal”. We refer to [14, §3] for a more thorough discussion.

Construction 2.1 (Generalized Cartier divisors on animated rings). Given an animated ringA, the following
∞-categories are equivalent:

(1) The∞-category of maps I α−→ A in D(A) with I being an invertible A-module; we refer to such
objects as generalized invertible ideals in A.

(2) The∞-category of maps Spec(A)→ [A1/Gm] of derived stacks.
(3) The∞-category of maps A → A of animated rings whose fibre I is an invertible A-module; we

refer to such objects as generalized Cartier divisors on A (or on Spec(A)).
We sketch the construction of the equivalences. The equivalence of (1) and (2) is essentially the functor of
points description of [A1/Gm] in derived algebraic geometry. To go from (2) to (3), we take Spec(A) →
Spec(A) to be the pullback of the “origin” BGm → [A1/Gm] along the given map Spec(A) → [A1/Gm].
To go from (3) to (1), we take the fibre I → A of the map A→ A in D(A).

For future reference, we observe that this notion has an obvious functoriality inA: given a mapA→ B
of animated rings and a generalized Cartier divisor A→ A, the base change B → B ⊗L

A A is a generalized
Cartier divisor on B.

We also remark that if a generalized Cartier divisorA→ A corresponds to a generalized invertible ideal
I → A under the equivalence of (1) and (3), then I → A is the fibre of A → A of D(A). For this reason,
we shall also often denote a generalized Cartier divisor as A→ A = A/I with the understanding that the
corresponding object in (1) is given by I → A.

We shall write GCart for the∞-category of all generalized Cartier divisors A → A, defined as the full
subcategory of Fun(∆1,CAlgan) of the∞-category of arrows in CAlgan defined by (3) above.

Warning 2.2. Given a generalized Cartier divisor A → A/I where A is discrete, the animated ring A/I
need not be discrete. In fact, A/I is discrete exactly when I → A is an injective map of invertible A-
modules; in this case, the closed subscheme Spec(A) ⊂ Spec(A) is an effective Cartier divisor in the usual
sense.

Notation 2.3. Given a generalized Cartier divisor A → A = A/I and an animated A-algebra B, we make
the following definitions:

• We say that B is I-complete if it is complete with respect to finitely generated ideal of π0(B) gen-
erated by the image of π0(I) → π0(A) → π0(B). Similarly, we say that B is (p, I)-complete if it
is additionally also p-complete.
• We write B → B = B/IB for the generalized Cartier divisor on B defined by base change; thus,

we also write (IB → B) := (I ⊗L
A B → B) for the generalized invertible ideal on B defined by

base change from (I → A).

Definition 2.4 (Animated prisms). (1) An animated prism is given by an animated δ-ring A (Defini-
tion A.11) equipped with a generalized Cartier divisor A → A = A/I on A (Construction 2.1)
satisfying the following:
(a) A is (p, I)-complete.
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(b) Given a perfect field k of characteristic p and an animated δ-map A → W (k) such that the
corresponding map A→ k of animated rings annihilates I → A, we have W (k)⊗L

A A ' k as
W (k)-algebras; note that any such identification is unique.

The description in (1) naturally defines an∞-category of animated prisms as a full subcategory of the
fibre product of

GCart (A→A)7→A−−−−−−−→ CAlgan forget←−−− δCAlgan .

Concretely, this yields the following notion of morphisms:
(2) A morphism (A → A) → (B → B) of animated prisms is given by a morphism of f : A → B

of animated δ-rings and an animated A-algebra map A → B (where B is viewed as an animated
A-algebra via f ).

(3) An animated prism A→ A/I is called:
• orientable if I ' A abstractly as A-modules.
• perfect if A is a perfect δ-ring, i.e., φ : A→ A is an isomorphism.

Notation 2.5. Given an animated prismA→ A, we shall write Spf(A)→ Spf(A) for the closed immersion
of derived formal schemes obtained from Spec(A)→ Spec(A) by endowing both animated rings with the
(p, I)-adic topologies, i.e., Spf(A) = Spec(A)×[A1/Gm] [Â1/Gm], where Â1 is the formal completion of A1

(over Z) at the closed point Spec(Fp)
origin−−−→ A1.

There is an evident forgetful functor from the ∞-category of animated prisms to the ∞-category of
generalized Cartier divisors. The most basic examples of animated prisms are the following:

Example 2.6. Let k be a perfect field of characteristic p; endow W (k) with its unique δ-structure. Then
there is a unique (up to unique isomorphism) animated prism structure onW (k), and it is given by the map
W (k)→W (k)/p = k. Moreover, this animated prism is perfect.

We shall see in Corollary 2.14 below that if (A, I) is a prism in the classical sense, then A → A/I is an
animated prism, which justifies the name “animated prism”.

Remark 2.7 (Detecting the prismatic condition on π0(−)). Fix an animated δ-ring A. Recall that π0(A)
is inherits a δ-structure and A → π0(A) is the universal map from A to a discrete δ-ring (Remark A.14).
Given a generalized Cartier divisor A → A/I such that A is (p, I)-complete, the map A → A/I is an
animated prism if and only if its base change π0(A) → π0(A)/Iπ0(A) is an animated prism: indeed, the
completeness condition on A passes to π0(A), and condition (b) in Definition 2.4 (1) can be checked after
base to π0(A).

Remark 2.8 (Base changing animated prism structures along δ-maps). Fix an animated prism A → A/I .
Given an animated δ-A-algebra B which is (p, I)-complete, the base change B → B/IB of A → A/I is
an animated prism. In particular, the map π0(A) → π0(A)/Iπ0(I) ' π0(A)/π0(I) (where the quotient is
understood in the derived sense) is an animated prism.

Note that even when A→ A/I is a bounded prism (via the fully faithful embedding in Corollary 2.14)
and B is a discrete (p, I)-complete δ-A-algebra with bounded p∞-torsion, the base change B → B/IB
is typically only an animated prism (i.e., it need not lie in the image of the fully faithful embedding in
Corollary 2.14).

Remark 2.9 (Rigidity of maps between animated prisms). Given a map (A → A/I) → (B → B/J) of
animated prisms, the induced animated B-algebra map B/IB → B/J is an isomorphism; consequently,
the induced map (IB → B) → (J → B) of generalized invertible ideals in B is also an isomorphism.
To check this, since both B/IB and B/J are perfect B-modules, it suffices to check isomorphy after base
change to the perfected residue field k at a closed point of Spec(B). But the structure map B → k to any
such field annihilates J (and thus IB) by the J -completeness of B. Condition (2) in Definition 2.4 then
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implies thatB/IB → B/J already becomes an isomorphism after base change alongB →W (k), and thus
also along B → k.

Corollary 2.10. The ∞-category of animated prisms over a fixed animated prism (A → A/I) identifies
with the∞-category of (p, I)-complete animated δ-A-algebras via the forgetful functor.

Proof. Combine Remark 2.8 and Remark 2.9 �

Example 2.11 (Cartier-Witt divisors and animated prism structures on W (R)). Let R be a discrete p-
nilpotent ring, and regard W (R) as a δ-ring with its standard δ-structure. Given a Cartier-Witt divi-
sor α : I → W (R) on R, the corresponding generalized Cartier divisor W (R) → W (R)/I is an ani-
mated prism: the completeness conditions are automatic by the definition of a Cartier-Witt divisor, and
the rest follows by base change (Remark 2.8) using Example 2.6. Conversely, for any animated prism
W (R) → W (R)/I , the corresponding generalized invertible ideal α : I → W (R) is a Cartier-Witt
divisor on R exactly when the composite map I → W (R) → R factors over the nilradical of R: this is
true by definition of a Cartier-Witt divisor.

Lemma 2.12. Fix a discrete δ-ring A and a generalized Cartier divisor A → A = A/I . Assume that A is
(p, I)-complete. Then A → A gives an animated prism structure on A if and only if p ∈ (α(I), φ(α(I)))
in A.

Proof. Under the given hypotheses, we must check that requiring condition (2) in Definition 2.4 is equiv-
alent to requiring p ∈ (α(I), φ(α(I))) in A.

Assume that p ∈ (α(I), φ(α(I))) ⊂ A. Fix a perfect field k of characteristic p and a map A → k
annihilating α : I → A; lift this map to a unique δ-map A→ W (k). The base change αk : Ik → k is 0 by
assumption, so the base change IW (k) → W (k) must factor (necessarily uniquely) over pW (k) ↪→ W (k).
It will suffice to prove that the resulting map IW (k) → pW (k) is an isomorphism of W (k)-modules. In
fact, as this is a map of invertibleW (k)-modules, it suffices to prove surjectivity. Writing IW (k) ⊂W (k)
for the image of αW (k) : IW (k) →W (k), it is enough to check p ∈ IW (k). But any ideal inW (k) is stable
under φ, so the containment p ∈ IW (k) follows from the assumption p ∈ (α(I), φ(α(I))) ⊂ A and the
φ-equivariance of A→W (k).

Conversely, assume condition (2) in Definition 2.4 holds; we shall check p ∈ (α(I), φ(α(I))) ⊂ A. As
in [3, proof of (2) ⇒ (3) in Lemma 3.1], choose an ind-Zariski localization A → B of δ-rings such that
I ⊗A B ' B (as B-modules) and such that p and α(I) lie in the Jacobson radical of B. Write d ∈ α(I)B
for the image of a fixed generator of IB under αB : IB → B. We claim that δ(d) is a unit; granting this,
the lemma will follow from [3, Lemma 3.1, (3) ⇔ (1)]. Now the condition of being a unit for an element
of a commutative ring can be detected by passage to residue fields at closed points. As p and d lie in the
Jacobson radical of B, it suffices to check the following: for any perfect field k of characteristic p and any
map B → k annihilating d and corresponding to a δ-map B → W (k), the image of δ(d) in W (k) is a
unit. It suffices to show that the image of d in W (k) has p-adic valuation 1. But the ideal dW (k) ⊂W (k)
generated by the image of d identifies with the image of αW (k) : IW (k) → W (k) by construction; as
I → A → B → W (k) → k is 0, we may apply the assumption in (2) to conclude that dW (k) = pW (k),
as wanted. �

Lemma 2.13. Let A be a discrete δ-ring.

(1) For any prism structure (A, I) on A, the map A → A := A/I defines an animated prism with
corresponding generalized invertible ideal given by the inclusion I ⊂ A,

(2) Given an animated prism structure A → A on A whose generalized invertible ideal α : I → A is
an injective map of A-modules, the pair (A, I) is a prism.

Proof. Part (1) follows from the “if” direction of Lemma 2.12, while part (2) follows from the “only if”
direction of the same. �
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Corollary 2.14 (Prisms as animated prisms). The construction in Lemma 2.13 (1) gives a fully faithful em-
bedding of the category of prisms (A, I) into the ∞-category of animated prisms A → A; its essential
image is exactly those animated prisms A→ A where A and A are both discrete.

Proof. This follows immediately from Lemma 2.13. �

Lemma 2.15. LetA→ A/I be an animated prism. Then the invertibleA-modulesφ∗I and Ip are isomorphic
to A.

Proof. Isomorphisms between invertible A-modules can be detected after base change to π0(A) by defor-
mation theory. We may therefore assume thatA is a discrete δ-ring. In this case, the proof of this result for
prisms given in [3, Lemma 3.6] applies equally well in our setting. �

Corollary 2.16 (Perfect animated prisms are prisms). The functor in Corollary 2.14 identifies perfect prisms
with perfect animated prisms.

Proof. It suffices to show that for any perfect animated prismA→ A/I , the pair (A, I → A) is a prism. It
is standard from deformation theory that for any perfect p-complete animated ring A must have the form
W (R) for a perfect ring R of characteristic p (in fact, R = A/p); see Remark A.17. By Corollary 2.14, it
remains to check that I → A is injective. By Lemma 2.15 and the perfectness of A, the animated prism
A→ A/I is orientable. In this case, the claim follows from [3, Lemma 2.34]. �

We shall need the following animated version of [3, Proposition 7.11].

Proposition 2.17 (Lifting quasisyntomic covers, animated version). Let A → A = A/I be an animated
prism. LetA→ R be a p-quasisyntomic cover. Then there exists a (p, I)-completely faithfully flat animated
δ-A-algebra B and a factorization A→ R→ B in animated A-algebras.

Let us first sketch a proof using the notion of animated prismatic envelopes studied in [17, §5]. Note that
we are allowed to replace R by a p-quasisyntomic cover. After such a replacement, we can find relatively
perfect (p, I)-completely faithfully flat animated δ-A-algebra A′ and an animated A-algebra map A′ → R
which is surjective on π0 (see first paragraph of the proof below). Once we are in this situation, we can
take B to be the animated prismatic envelope of A′ → R relative to A in the sense of [17, Corollary 5.25];
the conjugate filtration from [17, Theorem 5.46] then proves the proposition. For the convenience of the
reader, we try to give a relatively self-contained exposition of this sketch; nonetheless, we use the model
categories of animated pairs from [17] at a crucial point to get δ-structures on certain prismatic complexes.

Proof. It suffices to construct the desired map A→ B after Zariski localization on Spf(A). We may there-
fore assume I ' A is the trivial line bundle over A, with the structure map I ' A → A corresponding
to an element d ∈ π0(A) that is distinguished. We may then choose a transversal prism (A0, I0 = (d))
and a map (A0, I0) → (A, I) of animated prisms (e.g., using Remark APC.3.2.7 ). By replacing R with a
p-quasisyntomic cover obtained by formally adjoining p-power roots of all elements of π0(R) in animated
p-complete A-algebras, we can find a map A′ := A[{X1/p∞

s }s∈S ]∧(p,I) → R, surjective on π0, for some set
S. Note thatA′ is naturally a (p, I)-completely faithfully flat and relatively perfect animated δ-A-algebra.
We shall check that B := �R/A′ (defined via animating the D̂(A0)-valued functor �B/(−)∧

(p,d)
on finitely

generated free δ-rings over A0) solves the problem, i.e., B has a natural animated δ-A-algebra structure,
there exists a factorization A → R → B of the natural map A → B of animated A-algebras, and that the
mapR→ B appearing in this factorization is a p-quasisyntomic cover; note that the last condition implies
that A→ B is (p, I)-completely faithfully flat by assumption on A→ R.

First, we explain why B admits an animated δ-A-algebra structure. For this, consider the∞-category C
of maps (C → T ) where C is an animated δ-A0-algebra, T is an animated A0-algebra, and the map C → T
is an animated A0-algebra map which is surjective on π0. This∞-category is compactly generated with
compact generators as described in [17, Lemma 5.24]. In particular, we can represent (A′ → R) ∈ C as the
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colimit of a diagram {Ai → Ri}i∈I in C , where each Ai is a δ-A0-algebra of the form A0{X,Y }∧(p,d) for
suitable sets X and Y of free δ-variables and Ri = (Ai/(d, Y ))∧p . It is then enough to endow each �Ri/Ai

with an animated δ-Ai-algebra structure functorially in i. But each �Ri/Ai
is discrete by the Hodge-Tate

comparison and in fact identifies with the prismatic envelope of ker(Ai → Ri) ⊂ Ai, which has a unique
δ-structure compatible with that of Ai (see [3, Lemma 7.7]), so we win.

Next, observe that A→ A′ is relatively perfect, so the map �R/A → B := �R/A′ is an isomorphism by
the Hodge-Tate comparison. By functoriality of the Hodge-Tate structure maps for prismatic cohomology
relative to A, we obtain the desired factorization A → R → B of the natural map A → B of animated
A-algebras.

Finally, we must show that R → B ' �R/A is p-completely faithfully flat. This follows from the
Hodge-Tate comparison and the assumption that A→ R is p-quasisyntomic. �
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3. Absolute prismatization

In this section, we introduce and study the Cartier–Witt stack of a p-adic formal scheme as well as some
important related stacks.

Definition 3.1 (The prismatization of a p-adic formal scheme). Let X be a bounded p-adic formal scheme.
Its prismatization is the groupoid valued functor WCartX on p-nilpotent rings defined as follows: the
groupoid WCartX(R) is the groupoid of pairs (I

α−→ W (R), η : Spec(W (R)) → X), where (I
α−→

W (R)) ∈WCart(R) is a Cartier-Witt divisor, and η is a morphism of derived formal schemes.

A Cartier-Witt divisor on α : I → W (R) on a p-nilpotent ring R can be viewed as an animated prism
structure on W (R) via Example 2.11. Experience in prismatic cohomology then suggests that Spf(W (R)),
whereW (R) is endowed with the p-adic topology, is the natural space to attach to the animated ringW (R).
On the other hand, Definition 3.1 uses seemingly larger space Spec(W (R)). But this is only an apparent
discrepancy as the two objects coincide. This follows from the next two lemmas, which will also be used in
the sequel.

Lemma 3.2. Let R be a p-nilpotent ring.
(1) If J ⊂ R is a square-zero ideal, then W (J) := ker(W (R) → W (R/J)) is a square-zero ideal of

W (R).
(2) For any n ≥ 1, the kernel of Wn+1(R) → Wn(R) is a nilpotent ideal. Moreover, the order if

nilpotence is bounded in terms of the order of p-nilpotence of R.

Proof. (1) Each element ofW (J) can be written uniquely as
∑

i≥0 V
i([ai]) for ai ∈ J . By continuity,

it then suffices to show that for all a, b ∈ J and i, j ≥ 0, we have V i([a])V j([b]) = 0. We prove
this by induction on i+ j. If i = j = 0, then we are simply observing that [a][b] = [ab] = 0 as J is
square-zero. If i > 0 and j = 0, then

V i([a])[b] = V (V i−1([a]))[b] = V (V i−1([a]))F ([b]),

which vanishes as F ([b]) = [bp] = 0 as bp ∈ J2 = 0. Finally if i, j > 0, then a similar manipulation
gives

V i([a])V j([b]) = V (V i−1([a])FV j([b])) = V (V i−1([a])pV j−1([b])) = pV (V i−1([a])V j−1([b])),

which vanishes as V i−1([a])V j−1([b]) = 0 by the inductive hypothesis.
(2) The claim about the order of nilpotence will follow from the proof of nilpotence. For the latter,

using (1) and the p-adic filtration onR, we may assumeR is an Fp-algebra. In this case, we claim that
Wn+1(R) is a square-zero extension of Wn(R). Since Wm(R) = W (R)/V mW (R) for all m, this
amounts to checking the following: for an Fp-algebra R and a, b ∈W (R), we have V n(a)V n(b) ∈
V n+1(R). We prove this by induction on n ≥ 1. For n = 1, we have

V (a)V (b) = V (FV (b)a) = V (pba) = V (1)V (ba) = V (FV (ba)) = V 2F (ba) ∈ V 2W (B).

For n > 1, we have
V n(a)V n(b) = V (V n−1(a)FV n(b)) = V (pV n−1(a)V n−1(b)) = pV (V n−1(a)V n−1(b)).

By induction, this has the form pV (V n(c)) = V n+1(pc) for some c ∈W (B), as wanted.
�

Lemma 3.3. Let α : I → W (R) be a Cartier-Witt divisor on a p-nilpotent ring R. Then π0(W (R)/I) is a
p-nilpotent ring.

Proof. Using Lemma 3.2 (1) repeatedly, we may assume that R is an Fp-algebra, and that the Cartier-Witt
divisor α : I → W (R) lies in the Hodge-Tate locus, i.e., α(I) ⊂ VW (R). Next, we can choose a finite
Zariski open cover {Spec(Ri)} of Spec(R) such that IW (Ri) is free over W (Ri). Now the functor S 7→
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W (S)/IW (S) is a Zariski sheaf of groupoids (or even complexes) on Spec(R). Since a finite limit of p-
nilpotent complexes is p-nilpotent, we then reduce to checking the statement when I ' W (R) is free.
Write V (u) ∈ α(I) ⊂ VW (R) for the image under α of a fixed generator of I , so α(I) = V (u)W (R).
Note that u ∈ W (R) must be a unit by definition of a Cartier-Witt divisor. We must check that p is
nilpotent in the ring W (R)/V (u)W (R); in fact, we claim that p2 ∈ V (u)W (R). For this, we must find
x ∈ W (R) with p2 = xV (u). Noting that p = V (1) as R is an Fp-algebra, this amounts to finding
x ∈W (R) such that V (p) = V (Fxu) or equivalently that Fx = pu−1. But then x = V u−1 does the job:
indeed, Fx = FV u−1 = pu−1. �

Remark 3.4 (WCart as a prismatization). We have WCartSpf(Zp) 'WCart as Spf(Zp) is the final object in
the category of p-adic formal schemes.

Remark 3.5 (Compatibility of WCart(−) with limits). For any map f : X → Y of bounded p-adic formal
schemes, there is an induced functorial map WCartf : WCartX → WCartY on prismatizations, so we
can regard WCart(−) as a functor from bounded p-adic formal schemes to presheaves of groupoids on p-
nilpotent rings. In fact, as Spf(Zp) is the final object in the category of p-adic formal schemes, the functor
WCart(−) naturally takes valued in presheaves of groupoids over WCart = WCartSpf(Zp); when viewed
as such, it is immediate from the definition that this functor commutes with limits of Tor-independent
diagrams (i.e., those diagrams whose limit in p-adic formal schemes agrees with the limit in derived p-adic
formal schemes).

Remark 3.6 (The Frobenius on WCartX ). For any bounded p-adic formal schemeX , the presheaf WCartX
carries a natural (in X) endomorphism FX : WCartX →WCartX induced by the Frobenius on the Witt
vectors: given a p-nilpotent ring R and a point

(α, η) := (I
α−→W (R), η : Spec(W (R))→ X) ∈WCartX(R),

we obtain a new point

FX(α, η) := (F ∗I
F ∗α−−→W (R), Spec(W (R)/F ∗I)

η◦F−−→ X) ∈WCartX(R),

where F comes from the map W (R) := W (R)/I → W (R)/F ∗I induced by the Frobenius on W (R).
Note that FSpf(Zp) equals the Frobenius on WCart from Construction APC.3.6.1 . Moreover, using the
equality F = W (ϕ) of endomorphisms of W (R) when R is an Fp-algebra with Frobenius ϕ, one checks
that FX is a lift of the Frobenius on WCartX ⊗ZpFp; thus, we can regard FX as a δ-structure on WCartX
when the latter is known to be Zp-flat (e.g., when X = Spf(Zp)).

The following variants of the prismatization construction shall also be useful.

Construction 3.7 (The Hodge-Tate stack). For a bounded p-adic formal scheme X . Form a fibre square

WCartHT
X

//

��

WCartX

��
WCartHT // WCart

defining the Hodge-Tate stack WCartHT
X ofX . Given a p-nilpotent ringR and a Cartier-Witt divisor (I α−→

W (R)) ∈ WCartHT(R) ⊂ WCart(R), the map α factors over VW (R) ⊂ W (R), so there is an induced
map W (R) → W (R)/VW (R) ' R. Consequently, given a point ((I α−→ W (R)), η : Spec(W (R)) →
X) ∈ WCartHT

X (R), one obtains a map η : Spec(R) → Spec(W (R))
η−→ X . This construction defines a

map
πHT : WCartHT

X → X

that we refer to as the Hodge-Tate structure map.
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Construction 3.8 (The diffracted Hodge stack). Fix a bounded p-adic formal schemeX . We have the struc-
ture map WCartHT

X →WCartHT. Form a fibre square

X /D //

��

WCartHT
X

��
Spf(Zp) // WCartHT

,

where the map Spf(Zp)
η−→WCartHT is the G]

m-torsor from Theorem APC.3.4.13 ; we callX /D the diffracted
Hodge stack of X . Concretely, for any p-nilpotent ring S , one has a natural identification

X /D(S) 'Map(Spec(W (S)), X)

of groupoids, where the right side denotes a the space of maps in derived schemes withW (S) :=W (S)/V (1)

is defined using the Cartier-Witt divisor (W (S)
V (1)−−−→W (S)). Under this identification, the G]

m(S)-action
onX /D(S) is induced by the natural G]

m(S)-action on the animated ringW (S). Moreover, by construction,
we have

WCartHT
X ' X /D/G]

m.

Remark 3.9 (Compatibility with étale localization). The functors X 7→ WCartX ,WCartHT
X , X /D carry

étale morphisms to representable étale morphisms, and étale covers to étale covers. We shall explain this
for WCartX , which implies the rest by base change. Fix a p-completely étale map f : X → Y of bounded
p-adic formal schemes. We must check that WCartf is a representable étale morphism, and is also an étale
cover when f is so. We give the argument when f is an affine morphism; the general case is similar.

Fix a point Spec(R) → WCartY corresponding to a Cartier-Witt divisor I α−→ W (R) and a map η :
Spec(W (R)/I)→ X of derived formal schemes. To show representatibility, observe that the natural maps
give equivalences

Spec(R)ét ← Spf(W (R))ét → Spec(W (R))ét,

where W (R) is topologized using the (p, I)-adic topology. In particular, the pullback of f : Y → X

along η then has the form Spec(W (S))→ Spec(W (R)) for a uniquely determined étale R-algebra S. The
induced datum ((IW (S)

αW (S)−−−−→ W (S)), ηf : Spec(W (S)) → X) then yields a map Spec(S) → WCartX
fitting into a commutative square

Spec(S) //

��

Spec(R)

��
WCartX // WCartY .

Using a similar étale localization argument with the Witt vectors, one checks that this square is cartesian,
proving that f is representable étale.

It remains to prove that WCartf is an étale cover if f is so. This follows from the description of pull-
backs given in the previous paragraph together with the observation that the equivalence Spec(R)ét '
Spec(W (R))ét used above preserves étale covers.

For future use, we note that the observations in this remark remain valid if we replace the étale topology
with the Zariski topology.

Construction 3.10 (Objects of the absolute prismatic site give points of the prismatization). Fix a bounded
p-adic formal scheme X . Fix an object (Spf(A) ← Spf(A) → X) ∈ X� of the absolute prismatic site X�.
For any (p, I)-nilpotent A-algebra R, there is a unique δ-A-algebra structure on W (R) lifting the given
A-algebra structure on R. Base change along this map gives a Cartier-Witt divisor (IW (R) → W (R)) as
in Construction APC.3.2.4 together with a map η : Spec(W (R)) → Spf(A) η0−→ X of derived schemes;
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thus, we get a point Spec(R)→WCartX of the prismatization. LettingR vary, this construction yields an
A-valued point

ρX,A : Spf(A)→WCartX
of the prismatization, whereA is endowed with the (p, I)-adic topology. If there is no potential for confu-
sion, we shall denote this point simply by ρA.

Construction 3.11 (Using δ-structures to probe prismatizations). LetX be a bounded p-adic formal scheme
equipped with a δ-structure. Then we shall construct a natural map

πX : X ×WCart→WCartX
over WCart. Given a p-nilpotent ring R, an R-valued of the source corresponds to a Cartier-Witt divisor
(I

α−→ W (R)) together with a map η : Spec(R) → X . Using the δ-structure on X , the map η extends
uniquely to a δ-map Spf(W (R)) → X , where W (R) is endowed with the (p, I)-adic topology. Postcom-
position with the map W (R) → W (R) yields a map η : Spec(W (R)) → X . The assignment carrying
(α, η) to (α, η) yields the desired map πX . Note that the pullback of πX over WCartHT ⊂ WCart splits
the Hodge-Tate structure map WCartHT

X → X ×WCartHT.

Example 3.12 (The prismatization of a perfectoid). Let R be a perfectoid ring, and write (A, I) for the
unique perfect prism equipped with an identification A ' R. By Construction 3.10, we obtain a map

ρA : Spf(A)→WCartX .

We claim this map is an isomorphism of functors. To show this, fix a p-nilpotent ring S. We then have
functorial maps

WCartX(S)
a←−Map(A,W (S))

b←−Mapδ(A,W (S))
c−→Map(A,S),

where the map c is obtained by postcomposition with the restriction map W (S) → S , the map b is the
obvious inclusion, and the map a is given by sending a map A → W (S) to the induced map R = A →
W (S). Now c is an equivalence asW (−) is right-adjoint to the forgetful functor from δ-rings to rings. The
resulting composition abc−1 is exactly ρA(S). The map b is also an equivalence: this follows by deformation
theory as A is p-completely formally étale over Z. It therefore suffices to show that a is an equivalence.
Given an object x of WCartX(S) given by a Cartier-Witt divisor (J αx−→ W (S)) and a map ηx : R →
W (S)/J of animated rings, the induced composition A → A = R

ηx−→ W (S)/J refines uniquely (by
deformation theory again) to a map fx : A → W (S) of δ-rings, giving rise to a map (A → A/I) →
(W (S) → W (S)/J) of animated prisms. The induced map I ⊗A W (S) → J is then an isomorphism by
Remark 2.9, so x is the image of fx under a. In fact, as the constructions are functorial, it is easy to see that
x 7→ fx defines an inverse to a, proving a is an equivalence.

Remark 3.13. Using Example 3.12, prismatizing the natural map Spec(Fp)→ Spf(Zp) yields a natural map
Spf(Zp) 'WCartSpec(Fp) →WCartSpf(Zp) 'WCart .

It is immediate from the definitions that this point identifies with the de Rham point from Example APC.3.2.6 .
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4. Revisiting the prismatic logarithm

In this section, we reinterpret the prismatic logarithm constructed in §APC.2 using the Cartier–Witt
stack WCartGm ; the discussion here is comparable to [9, Theorem 2.7.7, §2.7.8].

Remark 4.1 (δ-structures on geometric objects). In this section, we shall use the notion of a δ-structures on
bounded p-adic formal schemes and stacks. As p-completely étale algebras over a p-complete δ-ring carry a
unique compatible δ-structure ([3, Lemma 2.18]), there is an evident notion of a δ-structure on a bounded
p-adic formal scheme X (or even such an algebraic space). When X is Zp-flat, the data of a δ-structure
on X is equivalent to that of a Frobenius lift; in general, this theory is studied in [4]. In the context of
stacks, to avoid developing the general theory here, we only use the notion of δ-structures in the context
of stacks which are known to be Zp-flat (especially WCart or flat group schemes over WCart); for such
stacks, a δ-structure is, by definition, a lift of the Frobenius, and a morphism is one that commutes with the
Frobenius lift.

Construction 4.2 (The group scheme GWCart of rank 1 units of a Cartier-Witt divisor). Applying Con-
struction 3.11 to X = Gm with the standard δ-structure gives a map

π : Gm ×WCart→WCartGm .

As Gm has a group structure and WCart(−) (valued in stacks over WCart) commutes with finite products
(Remark 3.5), the stack WCartGm is naturally a group stack over WCart. Moreover, as the δ-structure on
Gm respects the group structure, the map π is a morphism of group stacks over WCart. Using André’s
lemma (or simply Proposition 5.12 below), the map π can be seen to be a flat affine surjection. Its kernel
GWCart is thus a flat affine group scheme over WCart that sits in an exact triangle

GWCart → Gm ×WCart→WCartGm

of abelian group stacks over WCart. Unwinding definitions, one finds that the fibre of this sequence of
stacks over a point (I α−→W (R)) ∈WCart(R) is given by the following sequence of Picard groupoids:

(1 + I)rk=1 → R∗ [·]−→W (R)
∗
,

where the leftmost term can be regarded as defined by this fibre sequence. Note that we can explicitly
describe this term via

(1 + I)rk=1 := Fib
(
R∗ [·]−→ (W (R))∗

)
' (1 + I)×W (R)∗ R

∗

where we use the identificationW (R)∗/(1+ I) 'W (R)
∗ (coming from the I-completeness ofW (R)) for

the last isomorphism.

Remark 4.3 (GWCart as a functor on prisms). The flat group scheme GWCart → WCart from Construc-
tion 4.2 supports a δ-structure by functoriality, and hence can be regarded as a functor on p-torsionfree
prisms via Construction APC.3.2.4 . Expliclty, for any bounded prism (B, J)withB p-torsionfree, we have
a classifying map ρB : Spf(B)→WCart of δ-stacks. One can then contemplate the set HomWCart,δ(Spf(B), GWCart)
of δ-maps Spf(B)→ GWCart over WCart. We claim that there is a natural identification

HomWCart,δ(Spf(B), GWCart) ' (1 + J)rk=1.

To see this, observe that the pullback ρ∗BGWCart → Spf(B) is naturally identified with Spf(C)→ Spf(B),
where C is the δ-B-algebra defined in Lemma APC.2.5.13 : this can be seen using the description of the
functor HomB(C,−) arising by composing the conclusion of Lemma APC.2.5.13 (extended to virtual
prisms (A, I) with the same conclusion) with the adjunction between the forgetful and Witt vector func-
tors relating δ-B-algebras to all B-algebras. Moreover, the structure of a δ-B-group scheme on Spf(C)
comes via the obvious group structure on the right side of the functor of points interpretation given in
Lemma APC.2.5.13 . These identifications show that

HomWCart,δ(Spf(B), GWCart) ' HomB(C,B) = (1 + J)rk=1,
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as promised.

Remark 4.4 (GWCart over the Hodge-Tate locus). Let us explain why the base changed group scheme

GWCartHT := GWCart ×WCart WCartHT →WCartHT

is a twisted form of G]
a. Observe that for any point (I α−→ W (R)) ∈ WCartHT(R) ⊂ WCart(R), the

composite map I α−→ W (R) → R is the 0 map. It follows that the fibre of GWCart(R) → WCart(R)
over a point (I α−→ W (R)) ∈ WCartHT(R) ⊂ WCart(R) is identified with the group 1 + ker(α) under
multiplication. Subtracting 1 identifies 1 + ker(α) with the additive ker(α) as ker(α) = π1(W (R)/I)

inherits a square-zero multiplication. By further pulling back to the Hodge–Tate point Spf(Zp)
V (1)−−−→

WCartHT, one then checks that the group scheme GWCartHT →WCartHT is indeed a twisted form of G]
a.

Remark 4.5 (The prismatic logarithm through GWCart). Let us reinterpret the prismatic logarithm as a
homomorphism GWCart → V(OWCart{1}) of group schemes over WCart. Given a bounded prism (B, J)
with B p-torsionfree, consider the map (B, J)→ (C,K) coming from Lemma APC.2.5.13 . The prismatic
logarithm from Proposition APC.2.5.10 applied to the tautological generator w ∈ C gives an element
log�(w) ∈ C{1}. Via Remark 4.3, this can be viewed as a morphism

log�,B : ρ∗BGWCart → V(OSpf(B){1}) = Spec
B
(Sym∗B{−1})

of affine formal schemes overB. The homomorphism property of the prismatic logarithm (Proposition APC.2.5.16 )
ensures that log�,B is a homomorphism of group schemes. Remark APC.2.5.9 shows that V(OSpf(B){1})
has a natural Frobenius lift lying over the Frobenius lift on Spf(B); the compatibility of the prismatic log-
arithm with the Frobenius (Proposition APC.2.5.18 ) then ensures that log�,B respects the Frobenius lifts
(and thus δ-structures as B is p-torsionfree). As the formation of log�,B is evidently compatible with base
change, it follows from flat descent for affine maps and Proposition APC.3.3.5 that there is a homomor-
phism

log� : GWCart → V(OWCart{1})
of group δ-schemes over WCart characterized by the following property: for every bounded prism (A, I)
with A p-torsionfree and classifying δ-map ρA : Spf(A)→WCart, the diagram

HomWCart,δ(Spf(A), GWCart)

log�(Spf(A))

��

' // (1 + I)rk=1

log�

��

HomWCart,δ(Spf(A),V(OWCart{1}))

inc

��
HomWCart(Spf(A),V(OWCart{1}))

' // A{1}

commutes; in fact, it suffices to check this compatibility for transversal prisms.

Remark 4.6 (The prismatic logarithm at the de Rham point). Let us describe the pullback ρ∗dR log� of the
map log� from Remark 4.5 to the de Rham point ρdR : Spf(Zp) → WCart. Observe that the ring C
provided by Lemma APC.2.5.13 over the prism (B, J) = (Zp, (p)) is explicitly given by

C = Zp[w]{
w − 1

p
}∧(p).
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Geometrically, via the adjunction between the Witt vector and forgetful functors, this tells us that ρ∗dRGWCart
is the group scheme over Zp determined by the following functor on p-nilpotent rings:

ρ∗dRGWCart(R) = {y ∈W (R) | 1 + py ∈ R∗ [·]
⊂W (R)∗},

where the Witt-vector y is determined by the element w−1
p in the δ-ring C. The map log�,Zp

= ρ∗dR log�

identifies (by construction) with the map
log�,Zp

: Spf(C)→ V(OSpf(Zp){1}),

of group schemes over Zp determined by the element

log�(w) ∈ C{1} = Zp[w]{
w − 1

p
}∧(p){1}.

As (C, (p)) is a crystalline prism, we may trivialize the Breuil–Kisin twist as in Remark APC.2.6.4 . Under
this trivialization, the formula in Corollary APC.2.6.12 (3) allows us to rewrite the above element classically
as

log(w)
p

∈ Zp[w]{
w − 1

p
}∧(p).

Using this description of ρ∗dR log�, one can identify the map log� from Remark 4.5 with the map GΣ →
OΣ{1} constructed in [9].
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5. The relative prismatization

In this section, we introduce the relative Cartier–Witt stack in the setup of relative prismatic cohomol-
ogy (Variant 5.1), and study the geometry of its Hodge–Tate locus in the smooth case (Proposition 5.12).

Variant 5.1 (The relative prismatization). Let (A, I) be a bounded prism, and letX be a p-adic formal scheme
over A. Then the relative prismatization WCartX/A is the groupoid valued functor on p-nilpotent rings
defined as follows: for any p-nilpotent ringR, the groupoid WCartX/A(R) consists of the groupoid of maps
α : A → R carrying I to a nilpotent ideal together with a map η : Spec(W (R)) → X of derived formal
A-schemes (where W (R) is regarded as a δ-A-algebra via adjunction from the given map A → W (R)).
Forgetting η yields a map WCartX/A → Spf(A) that we refer to as the structure map. We then have a
fibre square

WCartX/A
//

��

WCartX

��
Spf(A)

ρA // WCartA
where the map ρA : Spf(A) → WCartA comes from Construction 3.10 as (A, I) is a prism over A. Simi-
larly, one has the relative Hodge-Tate stack

WCartHT
X/A = WCartX/A×WCart WCartHT 'WCartX/A×Spf(A)Spf(A).

Moreover, the constructionsX 7→WCartX/A,WCartHT
X/A are functorial inX , and preserve Tor-independent

limits.

Construction 5.2 (From the relative prismatic site to the relative prismatization). Let (A, I) be a bounded
prism, and let X be a p-adic formal scheme over A. For any prism (B, IB) ∈ (X/A)�, Construction 3.10
gives natural maps ρX,B : Spf(B) → WCartX and Spf(B) → Spf(A) inducing canonically isomorphic
maps ρA,B : Spf(B) → WCartA. Consequently, we obtain map ρX/A,B : Spf(B) → WCartX/A. It
is immediate from the definitions that this map is Frobenius equivariant. Varying through all objects of
(X/A)� and taking a limit, we obtain a natural Frobenius equivariant map

R�(WCartX/A,OWCartX/A
)→ R�site� (X/A)

of commutative algebras in D̂(A), where the right hand side is the site-theoretic relative prismatic coho-
mology (see Notation APC.4.3.1 ).

Remark 5.3 (Relative and absolute prismatizations coincide over perfect prisms). Let (A, I) be a perfect
prism, and let X be a p-adic formal scheme over A. By Example 3.12, the map ρA : Spf(A) → WCartA is
an isomorphism. Consequently, by base change, we also see that the projection WCartX/A →WCartX is
an isomorphism.

Remark 5.4 (The absolute prismatization via the relative ones). Let X be a bounded p-adic formal scheme.
Write f : X → Spf(Zp) for the structure map, giving rise to an induced map WCartf : WCartX →
WCart on prismatizations. For any bounded prism (A, I), the compatibility of WCart(−) with finite limits
(Remark 3.5) and the base change formula in Variant 5.1 show that

WCartX ×WCart,ρASpf(A) 'WCartXA/A .

We shall later use this description in conjunction with Proposition APC.3.3.5 to relate the pushforward
RWCartf,∗OWCartX to the objectH�(X) from Variant APC.4.4.6 .

Remark 5.5 (The diffracted Hodge stack as a relative Hodge-Tate stack). Let X be a bounded p-adic formal
scheme. By Proposition APC.3.8.12 , the diffracted Hodge stack X /D (Construction 3.8) is identified with
the relative Hodge-Tate stack WCartHT

X/A (as stacks over X) for the prism (A, I) = (ZpJp̃K, (p̃)).



THE PRISMATIZATION OF p-ADIC FORMAL SCHEMES 17

Our next goal is to provide a deformation-theoretic perspective on the relative Hodge-Tate stack that is
useful in calculations.

Notation 5.6 (Truncations of the kernel of F onW ). LetWn andW = limnWn denote the ring scheme of
n-truncated Witt vectors and all Witt vectors respectively; we shall work in derived algebraic geometry,
and refer to Notation A.5 and Remark A.7 for the the derived analogues of these constructions. For n ≥ 2,
consider the Frobenius map F :Wn →Wn−1. This is naturally a map ofW -algebras, and we defineWn[F ]
as the kernel

Wn[F ] := ker(Wn
F−→Wn−1).

Thus,Wn[F ] is aW -module scheme. Moreover, the formula xV y = V (Fx ·y) shows thatWn[F ] is annihi-
lated by the ideal VW ⊂ W , and is thus naturally a module over Ga = W/VW . By Variant APC.3.4.12 ,
we have an identification G]

a = W [F ] = limnWn[F ] of group schemes. For any of these group schemes
G, write BG for the classifying stack of G-torsors in the p-quasisyntomic topology.

Lemma 5.7 (Cohomology of G]
a and Wn[F ]). Fix a p-complete animated ring S and a finite projective

W (S)-module bundle E.

(1) For each n ≥ 2, there is a natural isomorphism

R�(Spf(S), E ⊗W Wn[F ])[1] ' Cone
(
E ⊗W Wn(S)

idE⊗F−−−−→ E ⊗W F∗Wn−1(S)
)
.

(2) There is a natural isomorphism

R�(Spf(S), E ⊗W W [F ])[1] ' Cone
(
E ⊗W W (S)

idE⊗F−−−−→ E ⊗W F∗W (S)
)
.

In particular, the complexes in (1) and (2) are connective.

Proof. We explain the proof of (2) as (1) is analogous. Cosndier the exact sequence

0→W [F ] ' G]
a →W

F−→ F∗W → 0

as a sequence ofW (S)-module schemes over Spf(S) via base change. Tensoring with theW (S)-moduleE ,
the claim reduces to showing the following (applied toG = E andG = F ∗E): we have R�(Spf(S), G⊗W (S)

W ) ∈ D≤0 for any finite projective W (S)-module G. Writing G as a retract of a finite free module, we
reduce to the case G = W (S), so we must check that R�(Spf(S),W ) ∈ D≤0, which is standard from
the vanishing of quasi-coherent sheaf cohomology on the derived formal affine scheme Spf(Wn(S)), the
formula W = limnWn where the inverse limit takes place over the restriction maps, and the fact that the
restriction maps Wn+1(S)→Wn(S) are surjective on π0 for all n. �

Remark 5.8. It follows from Lemma 5.7 that for any p-complete animated ring S , we can identify

BW [F ](S) ' R�(Spf(S),W [F ][1]),

and similarly after twisting by line bundles or replacing W [F ] with Wn[F ].

Remark 5.9. Fix a p-complete ring S. For any fixed n ≥ 1, Lemma 5.7 (1) shows that the complex
R�(Spf(S),Wn[F ]) is concentrated in degree 0 exactly when Wn(S)

F−→ Wn−1(S) is surjective; the lat-
ter condition (imposed for all n ≥ 1) has been studied by Davis-Kedlaya [5], who dub it Witt-perfectness.
Note that Witt-perfectness of S is in general weaker than demanding surjectivity of F : W (S)→ W (S);
for instance, OCp is Witt-perfect even though F : W (OCp) → W (OCp) is not surjective (see [5, Example
4.4]).

The following construction is fundamental to the deformation-theoretic perspective on the Hodge-Tate
stack:
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Construction 5.10 (A square-zero extension of Ga by BG]
a{1} attached to any prism). Let (A, I) be a

bounded prism. Given a p-complete animated A-algebra S , the composition A→ A→ S lifts to a unique
δ-A-algebra map A → W (S). Thus, we obtain an A-algebra map W (S) → S. We claim this map is a
square-zero extension. More precisely:

(∗) On the ∞-category of p-complete animated A-algebras, the map W (S) → S admits a natural
(in S) structure of a square-zero extension of S by the connective S-complex (BG]

a{1})(S) '
R�(Spf(S), I ⊗W W [F ])[1] ∈ D(S) (where the last equality comes from Lemma 5.7).

To show (∗), it suffices to prove the analog for Wn instead. In fact, we shall show the following slightly
stronger assertion for each n ≥ 2:
(∗n) On the∞-category of all p-complete animated A-algebras, the map Wn(S) → S admits a natural

(inS andn) structure of a square-zero extension ofS by the connectiveS-complex (BWn[F ])(S) '
R�(Spf(S), I ⊗W Wn[F ])[1] ∈ D(S) (where the last equality comes from Lemma 5.7).

The proof follows a familiar pattern: using compatibility with sifted colimits and descent, we can reduce
to proving (∗n) for a particularly small class of discrete rings S where the claim is essentially obvious.

Let C be the category of discrete p-complete A-algebras S with F : Wn(S) → Wn−1(S) surjective for
all n ≥ 1; in this paragraph, we prove the restriction of (∗n) to the subcategory C for all n. For S ∈ C , we
claim that the map α : IWn(S) → VWn(S) ' F∗Wn−1(S) linearizes to an isomorphism

α̃ : IWn(S) ⊗Wn(S) F∗Wn−1(S) ' F∗Wn−1(S) ' VWn(S).

Granting this, using the surjectivity of F :Wn(S)→Wn−1(S), we learn that

π0(Wn(S)) 'Wn(S)/VWn(S) ' S
and

π1(Wn(S)) = I ⊗A ker(Wn(S)
F−→Wn−1(S)) ' I ⊗A Wn(S)[F ](S).

The restriction of (∗n) to C then follows from the general fact that any 1-truncated animated ring is nat-
urally and uniquely a square-zero extension of its π0 by π1[1]. To prove isomorphy of α̃, it is enough
to check surjectivity as any surjection of invertible modules is an isomorphism. Moreover, we can work
Zariski locally on Spf(Wn(S)), so we may assume I = (d) is oriented; in this case, α(d) = V (u) for a
unit u ∈ Wn(S), so the surjectivity follows by unwinding definitions from the assumed surjectivity of
F :Wn(S)→Wn−1(S).

Next, as the functors R�(Spf(−), I⊗WWn[F ])[1] are p-quasisyntomic sheaves, we deduce (∗n) compatibly
in n for the category of p-completely smooth discreteA-algebras via descent from the claim in the previous
paragraph.

Finally, as the functor R�(Spf(−), I ⊗W Wn[F ])[1] from p-complete animated A-algebras to D̂(A) com-
mutes with sifted colimits (by the description in Lemma 5.7), the claim follows in general.

Remark 5.11 (Relating W to the obstruction to lifting modulo I2). Fix a bounded prism (A, I). In Con-
struction 5.10, we showed that presheaf W (−) of animated A-algebras is naturally a square-zero extension
of Ga by G]

a{1}[1] on the ∞-category of all p-nilpotent animated A-algebras. The animated A-algebra
W (−) also admits a canonical deformation to an A/I2-algebra given by W (−)/I2W (−). Consequently,
if we let R(−) denote the square-zero extension of Ga by Ga{1}[1] in p-nilpotent animated A-algebras
classifying the obstruction to lifting an A-algebra to A/I2, we obtain a natural map

α :W (−)→R(−)

of square-zero extensions of Ga. This map induces a Ga-module map G]
a{1}[1]→ Ga{1}[1] on the “ideals”

of the extension that one can check that this is a unit multiple of the standard map1. In other words, the

1Indeed, as HomW (G]
a,Ga) ' HomW (G]

a,Ga) ' A (see [8, Lemma 3.8.1 (ii)]), the map π1(α){−1} : G]
a → Ga of Ga-

modules has the form f · can for some f ∈ A. We must show that f is a unit. If not, then we can find a closed point x of
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square-zero extensionR ∈ SqZeroExtA(Ga,Ga{1}[1]) is obtained fromW (−) ∈ SqZeroExtA(Ga,G]
a{1}[1])

via pushout along a unit multiple of the standard map G]
a{1}[1] → Ga{1}[1]; in fact, we expect that the

phrase “unit multiple of” is not necessary.

Using the square-zero extension from Construction 5.10, one can study the relative Hodge-Tate stack
fairly explicitly.

Proposition 5.12 (The Hodge-Tate gerbe). Fix a bounded prism (A, I) and a smooth p-adic formalA-scheme
X . Then the Hodge-Tate structure map πHT : WCartHT

X/A → X is naturally a gerbe banded by the flat
X-group scheme TX/A{1}]. Moreover, this gerbe splits if X is affine (and thus always Zariski locally on
X).

Proof. For the first part, fix a p-nilpotent A-algebra S and a point η : Spec(S) → X . Our task is to show
that the fibre F of

πHT(S) : WCartHT
X/A(S) = X(W (S))→ X(S)

over the point η is a torsor for B(TX{1}])(S), i.e,, that F has a natural action of the group object

B(TX{1}])(S) 'MapS(η
∗Ω1

X/A
, BG]

a{1}(S))

in groupoids, and moreover this action is simply transitive if F 6= ∅. This follows from Construction 5.10:
the mapW (S)→ S is a square-zero extension ofS byBG]

a{1}(S), so the fibreF has the required structure
by derived deformation theory.

For the second part, set X = Spf(R). By deformation theory, we can first choose a (p, I)-completely
smoothA-algebra R̃ lifting theA-algebraR, and then choose a δ-structure on R̃ lifting that onA. For any
p-nilpotent A-algebra S , we then obtain isomorphisms

MapA(R,S) 'MapA(R̃, S) 'MapA,δ(R̃,W (S)),

where the second isomorphism comes from the δ-structure on R̃. Forgetting the δ-structure and composing
with the map W (S)→W (S) then gives a natural map

Spf(R)(S) 'MapA(R,S) 'MapA,δ(R̃,W (S))→MapA(R̃,W (S)) 'MapA(R,W (S)) 'WCartHT
Spf(R)/A(S).

It follows from the construction that this map is inverse to πHT(S), which proves (2). �

Remark 5.13 (The class of the relative Hodge-Tate gerbe). Fix (A, I) and X as in Proposition 5.12. We
then have the class αHT ∈ H2(X,TX{1}]) of the gerbe πHT : WCartHT

X/A → X . This class seems to be an
interesting invariant of X . We record some observations about this class:

(1) If X admits a lift to a (p, I)-completely flat formal δ-A-scheme, then αHT = 0; this follows from
the proof of the second part of Proposition 5.12. Note that this is the case if X is affine.

(2) The image ofαHT in H2(X,TX{−1}) (via the canonical map TX{−1}] → TX{−1}) is, up to a unit
multiple, the obstruction to liftingX toA/I2; this follows by the compatibility in Remark 5.11. In
particular, if αHT = 0, then X has a lift to A/I2.

Spec(A/pA) where f vanishes. Base changing along the resulting δ-map A → W (κ(x)perf), we may then assume that (A, I) =

(W (k), (p)) for a perfect field k of characteristic p and that the map π1(α) is 0. By deformation theory, the W (−)-algebra map
π0(W (−)) ' Ga

π0(α)−−−−→ π0(R) ' Ga (which is simply the identity) lifts to a W (−)-algebra map π0(W (−)) ' Ga
β−→ R: the

obstruction is the point of MapGa
(LGa/W (−),Ga{1}[2]) determined by postcomposition of π1(α) with the canonical map

LGa/W (−) → τ≥2LGa/W (−) '
(
π1(W (−))[1]

)
[1] ' G]

a{1}[2].

But the existence of β means that the square-zero extensionR→ Ga is split; by the moduli interpretation forR, this implies that
any k-algebra S has a canonical lift to W2(k), which is clearly false.
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(3) Assume we are in the crystalline case (i.e., so I = (p), and thus the Breuil-Kisin twist can be ignored);
we explain a (conjectural) partial converse to (1) in this case. As A/p has characteristic p, one has a
factorization G]

a � αp ⊂ Ga of the natural map of A/p-group schemes. Tensoring with TX and
pushing out αHT along this map gives a class αF ∈ H2(X,TX ⊗Ga αp). To understand this better,
we use the identification

H2(X,TX ⊗Ga αp) ' H1(X,TX ⊗OX
F∗OX/OX)

obtained by pushing forward the Kummer sequence for αp to the Zariski site. In this case, the
following seems quite plausible:

Conjecture 5.14. (a) The class αF ∈ H1(X,TX ⊗OX
F∗OX/OX) measures the failure of F -

liftability ofX relative toA (i.e., the failure to liftX toA/p2 compatibly with the Frobenius).
(b) The image of αF in H2(X,TX) under the map induced by the map F∗OX/OX → OX [1]

classifying the extension F∗OX is the obstruction class measuring the failure to liftX toA/p2.
(c) Write X ′ for the Frobenius twist of X . Consider the image α of αF under the natural map

H1(X,TX ⊗OX
F∗OX/OX) → H1(X,TX ⊗OX

F∗OX/FA/p,∗OX′)

' H1(X ′, TX′ ⊗B1Ω•)

= Ext1X′(Ω1
X′ , B1Ω•),

where Ω• = FX/(A/p),∗Ω
•
X/(A/p) is the de Rham complex of X (regarded as a quasi-coherent

complex onX ′ via restriction of scalars along the relative Frobenius) andB1 denotes the sheaf
of 1-cycles. Then the class α coincides with the canonical class αcan in Ext1X′(Ω1

X′ , B1Ω•)
arising from the complex Ω• via the Cartier isomorphism Ω1

X′ ' H1(Ω•).

It is a standard fact that the class αcan appearing in part (c) above is known the satisfy the analog
of parts (a) and (b) with X replaced by the Frobenius twist X ′ (see [18, Appendix, Proposition 1]
for the case A/p is perfect); from this optic, the conjecture can be regarded as a Frobenius descent
of this standard fact. Note that property (2) above implies part (b) up to a unit multiple.

Assuming the conjecture in (3), it follows that demanding the triviality of the Hodge-Tate gerbe πHT :

WCartHT
X/A → X puts rather strong constants on X . For instance, over any bounded prism (A, I), this

gerbe is non-trivial for any proper smooth curve of genus ≥ 2: specializing to a crystalline prism, this
follows as no such curve over a perfect field k of characteristic p is F -liftable.

Example 5.15 (The Hodge-Tate stack for Z/pn). Fix an integer n ≥ 2. We shall construct an isomorphism

WCartHT
Spec(Z/pn)⊗Fp ' G]

a/G]
m ⊗ Fp, (1)

of stacks over Fp, where the quotient on the right is formed for the natural G]
m-action on G]

a. In other
words, we shall identify the functor of points of WCartHT

Spec(Z/pn) on Fp-algebrasRwith G]
a/G]

m. Using the
isomorphism

WCartHT
Spec(Z/pn) ' Spec(Z/pn) /D/G]

m

from Construction 3.8, it suffices to show that for any Fp-algebra R, we have a G]
m(R)-equivariant natural

identification
Spec(Z/pn) /D(R) ' G]

a(R).

By definition, the left side is given by

Spec(Z/pn) /D(R) 'Map(Z/pn,W (R)/V (1)),
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where the mapping space is computed in p-complete animated rings. Now the animated rings Z/pn and
W (R)/V (1) are obtained from Zp and W (R) by freely setting pn and V (1) to be zero respectively. As Zp

is the initial object in p-complete animated rings, the above then simplifies to

Spec(Z/pn) /D(R) ' {x ∈W (R) | pn = xV (1)}.
Now R is an Fp-algebra, so pn = pn−1V (1) = V (pn−1). Using xV (1) = V (Fx) and injectivity of V , the
above then simplifies to

Spec(Z/pn) /D(R) ' {x ∈W (R) | Fx = pn−1},
with the action of G]

m(R) ' W ∗[F ](R) given by scalar multiplication action of W ∗[F ](R) on W (R). It
is easy to see that the right side above is a torsor for G]

a(R) =W [F ](R) for the additive translation action
of W [F ](R) on W (R); moreover, x = pn−1 solves Fx = pn−1. Thus, explicitly, we have an isomorphism

G]
a(R) =W [F ](R)

a7→a+pn−1

' {x ∈W (R) | Fx = pn−1}.

Using the fact that n − 1 ≥ 1, one then checks that the resulting bijection Spec(Z/pn) /D(R) ' G]
a(R)

intertwines the natural G]
m(R)-action on either sides, as wanted. For future reference, we remark that the

composite map

BG]
m ⊗ Fp

origin−−−→ G]
a/G]

m ⊗ Fp 'WCartHT
Spec(Z/pn)⊗Fp

can−−→WCartHT⊗Fp

arising from the isomorphism (1) is simply the isomorphism from Theorem APC.3.4.13 .

Remark 5.16 (Deligne–Illusie via the Sen operator). Fix a perfect field k of characteristic p. In Remark APC.4.7.18 ,
we explained why the mod p reduction of the map η : BG]

m ' WCartHT → WCart gives rise to a Sen
operator on the de Rham complex of a smooth k-scheme X equipped with a lift to a smooth p-adic for-
mal scheme X/W (k); this gave a refinement of the Deligne-Illusie decomposition [6] in this case. Exam-
ple 5.15 shows that the mod p reduction of η factors through the mod p reduction of the canonical map
WCartZ/p2 → WCart. Using this, one can show that the analysis in Remarks APC.4.7.18 , APC.4.7.19 ,
and APC.4.7.20 goes through using only the data of a flat lift to W2(k), as in [6].
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6. Comparison with prismatic cohomology

In this section, we prove the comparison between the stacky approach and the classical prismatic theory
at the level of cohomology (Theorem 6.4) and crystals (Theorem 6.5) in the lci case; the main ingredients in
the proof are the calculation of the relative Cartier–Witt stack in certain semiperfectoid cases (Lemma 6.1)
as well as a covering property of the Cartier–Witt stack (Lemma 6.3).

Lemma 6.1 (The prismatization of a regular semiperfectoid). Let (A, I) be a perfect prism. Let R = A/J
be for some ideal J containing I such that J/I ⊂ A/I = A is generated by a Koszul-regular sequence.
Assume R has bounded p∞-torsion, so �R is a prism over R by [3, Example 7.9]. Then the natural map

ρ�R
: Spf(�R)→WCartSpf(R)

from Construction 3.10 is an isomorphism of functors over A.

Corollary 7.18 shall extend the above result to general semiperfectoid rings R: for such R, the stack
WCartSpf(R) on p-nilpotent rings is corepresented by H0(�R).

Proof. Fix a generator d ∈ I . Choose a sequence x := {x1, ..., xr} in J whose image in J/I is a Koszul-
regular generating set. We shall describe both the source and target of ρ�R

in terms of these choices and see
that the descriptions coincide.

First, recall from [3, Proposition 3.13, Example 7.9] that �R is the (p, I)-complete δ-A-algebra ob-
tained fromA by freely adjoining {x1

d , ...,
xr
d } (even in the animated world). Consequently, for any (p, d)-

nilpotent A-algebra S , we have a natural identification

MapA(�R, S) 'MapA,δ(�R,W (S)) '
r∏

i=1

{h ∈W (S) | hd = xi}.

Next, by Example 3.12, for any (p, d)-nilpotent A-algebra S , we have a natural identification

WCartSpf(R)(S) 'MapA(R,W (S)).

Using the fact that R is obtained from A by freely setting xi = 0, we can rewrite this as

WCartSpf(R)(S) '
r∏

i=1

Path(W (S);xi, 0),

where the right side is the space of paths connecting xi to 0 in the groupoid W (S) for each i separately.
Using the description of W (S) as the Picard groupoid attached to the complex

(
W (S)

d−→W (S)
)

, one
sees immediately that

Path(W (S);xi, 0) ' {h ∈W (S) | hd = xi},
which gives the lemma. �

Variant 6.2 (The prismatization of a relative regular semiperfectoid). Let (A, I) be a bounded prism. Let S
be aA-algebra that can be written as a quotientR/J , whereR is p-completely flat overAwithA/(p, I)→
R/p being relatively perfect and J ⊂ R is generated by a Koszul-regular sequence. Assume S has bounded
p∞-torsion, so �S/A is a prism over S by [3, Example 7.9]. Then the natural map

Spf(�S/A)→WCartSpf(S)/A

is an isomorphism. To see this, setB = �R/A, so (B, IB) is a faithfully flat and relatively perfect prism over
(A, I), and S is endowed with the structure of an algebra over R = B/IB. As LS/A ' LS/B , the Hodge-
Tate comparison then shows that �S/A ' �S/B via the natural map. Similarly, by deformation theory, it
is also clear that the natural map gives an isomorphism WCartSpf(S)/A ' WCartSpf(S)/B of presheaves of
groupoids. We may then replace (A, I) with (B, IB) to assume that S is quotient ofA by a Koszul-regular
sequence. The proof of Lemma 6.1 now applies directly to show the claim.
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Lemma 6.3 (Prismatization preserves p-quasisyntomic covers). Let f : X → Y be a p-quasisyntomic cover
of bounded p-adic formal schemes. Then WCartf : WCartX → WCartY is surjective locally in the flat
topology.

Proof. As the formation of the prismatization commutes with Zariski localization (Remark 3.9), we may
assume both X and Y are affine. Fix a p-nilpotent ring R and a point η ∈ WCartY (R), corresponding
to a Cartier-Witt divisor (I

α−→ W (R)) with a map g : Spec(W (R)) → Y . We must show that there
exists a faithfully flat map R → S and a point ηS ∈ WCartX(S) lifting the image of η in WCartY (S).
Pulling back f along g gives a quasi-syntomic coverW (R)→W (R)⊗L

O(Y )O(X) of p-nilpotent animated
rings. By Proposition 2.17, there exists a (p, I)-completely faithfully flat W (R) → B of animated δ-
rings and a factorization W (R) → W (R)⊗L

O(Y )O(X) → B with both maps being faithfully flat. Write

R→ S := B⊗̂L
W (R)R for the base change ofW (R)→ B along the restriction mapW (R)→ R, soR→ S

is a faithfully flat map of p-nilpotent (discrete) rings. The natural W (R)-algebra map B → S refines
uniquely to a δ-W (R)-algebra map B → W (S). These constructions are summarized in the following
diagram

A //

��

W (R) //

��

B //

��

W (S)

��

A // W (R) // W (R)⊗L
O(Y )O(X) // B // W (S)

O(Y ) //

OO

O(X)

OO

where all squares are pushout squares of animated rings, and the maps in the top row are δ-maps. Moreover,
the compositionW (R)→W (S) in the top row is obtained by applyingW (−) to the mapR→ S: indeed,
the δ-map W (R) → W (S) appearing in the top row is adjoint to the map W (R) → B → W (S) → S ,
which also factors as W (R)→ R→ S by definition of S. The subdiagram

O(X)→W (S)←W (S)

then gives a point of WCartY (S), and the rest of the diagram shows that this point lifts η, as wanted. �

Theorem 6.4 (Comparing relative prismatic cohomology with the relative prismatization). Let (A, I) be a
bounded prism. Let X be a bounded p-adic formal A-scheme. Assume that X is p-completely lci over A,
i.e., for every affine open Spf(R) ⊂ X , theA-algebraR can be written asR0/J , whereR0 is a p-completely
smooth A-algebra, and J ⊂ R0 is generated by a regular sequence. Then the comparison map

cX/A : R�(WCartX/A,OWCartX/A
)→ R�site� (X/A)

from Construction 5.2 is an isomorphism.

Theorem 7.20 (2) and Remark 7.23 extend this result to all p-quasisyntomic A-schemes X .

Proof. As the comparison map is defined globally and both sides form Zariski sheaves as X varies, we may
assume X = Spf(R) is affine. As R is assumed to be p-completely lci over A with bounded p∞-torsion, we
can find a p-quasisyntomic cover R → S such that each term of the Čech nerve S∗ of R → S satisfies the
assumptions in Variant 6.2. Functoriality of the comparison map then gives the following commutative
diagram in D(A):

R�(WCartSpf(R)/A,O) //

��

R�site� (Spf(R)/A) ' �R/A

��
lim R�(WCartSpf(S∗)/A,O) // lim R�site� (Spf(S∗)/A) ' lim �S∗/A,
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where we have used Theorem APC.4.3.6 for the isomorphisms in the right column. Now the bottom
horizontal map is an equivalence by Variant 6.2, while the right vertical map is an equivalence by p-
quasisyntomic descent (Lemma APC.4.3.13 ). It is therefore enough to check that the left vertical map
is an equivalence. For this, observe that WCartSpf(S)/A → WCartSpf(R)/A is a flat cover by Lemma 6.3.
Moreover, the Čech nerve of this cover is exactly WCartSpf(S∗)/A by the compatibility of WCart−/A with
Tor-independent limits. The isomorphy of the left vertical then follows as R�(−,O) is a sheaf for the flat
topology on (p, I)-nilpotent A-algebras. �

Theorem 6.5 (Crystals via the Cartier-Witt stack). Fix a bounded prism (A, I). Let X be a bounded p-
adic formal scheme over A satisfying the same assumptions as Theorem 6.4. Pullback along the maps in
Construction 5.2 yields equivalences

Dqc(WCartX/A) ' D̂crys((X/A)�,O�) := lim
(B,IB)∈(X/A)�

D̂(B)

and
Dqc(WCartHT

X/A) ' D̂crys((X/A)�,O�) := lim
(B,IB)∈(X/A)�

D̂(B/IB)

of∞-categories, where the completions appearing on the right are with respect to (p, I).

Proof. This follows by similar argument to the one proving Theorem 6.4; we explain it for the first equiv-
alence. Using the Zariski sheaf property for both sides, we reduce to X = Spf(R) with R p-completely lci
over A with bounded p∞-torsion. Choose a cover R → S∗ as in the proof of Theorem 6.4 to obtain the
diagram

Dqc(WCartSpf(R)/A) //

��

D̂crys((Spf(R)/A),O�)

��

lim←−Dqc(WCartSpf(S∗)/A) // lim←−D̂crys((Spf(S∗)/A),O�) ' lim←−D̂(�S∗/A)

The isomorphism on the bottom right arises as (�Si/A, I�Si/A) provides an initial object of the relative
prismatic site (Spf(Si)/A)� for each i; Variant 6.2 then implies that the bottom horizontal map is an
equivalence. Also, the left vertical map is an equivalence by flat descent for quasi-coherent complexes
using the same reasoning as in Theorem 6.4, so it suffices to show the right vertical map is an equiva-
lence. For this, we first observe that �S∗/A is obtained by evaluating O� on the Čech nerve of the object
(�S0/A, I�S0/A) ∈ (Spf(R)/A)�: this follows as �−/A commutes with colimits when regarded as a functor
from p-complete animated A-algebras to (p, I)-complete E∞-A-algebras by the Hodge-Tate comparison.
By flat descent for crystals, it remains to check that (�S0/A, I�S0/A) ∈ (Spf(R)/A)� covers the final ob-
ject for the flat topology on (Spf(R/A)�. Fix (B, IB) ∈ (Spf(R)/A)�). By [3, Proposition 7.11] (which
is generalized in Proposition 2.17), there is a faithfully flat map (B, IB) → (C, IC) of prisms such that
R → C factors as R → S0 α−→ C. As (�S0/A, I�S0/A) is the final object of (Spf(S0)/A)�, the map α
refines to a map (�S0/A, I�S0/A) → (C, IC) in (Spf(S0)/A)� and thus also in (Spf(R)/A)�; this shows
that

(
Spf(�S0/A)→ ∗

)
is indeed a cover of the final object for the flat topology on (Spf(R/A)�. �

Let us use the above theorem to explicitly relate Hodge-Tate crystals to Higgs bundles; this relationship
justifies the choice of name for the “Higgs specialization” in [3, Remark 4.13].

Corollary 6.6 (Hodge-Tate crystals and Higgs bundles). Fix a bounded prism (A, I), and let X/A be a
smooth p-adic formal scheme. Assume that the relative Hodge-Tate stack WCartHT

X/A is identified with
BTX/A{1}] (possible if X is affine by Proposition 5.12). Then we have a natural equivalence

Vect((X/A)�,O�) ' VectHiggs(X/A; Ω1
X/A{−1})
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of categories, where the target denotes the category of pairs {E, θ : E → E ⊗ Ω1
X/A
{−1}}, where E is

a vector bundle on X and θ is Higgs field (i.e., an OX -linear map such that θ ∧ θ = 0) which is nilpotent
modulo p.

The equivalence constructed in the proof below depends on the chosen splitting of the Hodge-Tate gerbe,
so the equivalence is only natural for morphisms that respect this splitting. The proof below also adapts
to a similar statement for perfect complexes. In particular, for X affine, one can compute the cohomology
of a Hodge-Tate crystal of vector bundles via the de Rham complex of the associated Higgs bundle. This
equivalence as well as the cohomological comparison was also recently observed by Tian [23].

Proof. The second equivalence in Theorem 6.5 restricts to an equivalence

Vect((X/A)�,O�) ' Vect(WCartHT
X/A).

Using the chosen trivialization WCartHT
X/A ' BTX{1}] of the Hodge-Tate stack, this then gives an equiv-

alence
Vect((X/A)�,O�) ' Vect(BTX{1}]).

To finish, it suffices to show that
Vect(BTX{1}]) ' VectHiggs(X/A; Ω1

X/A{−1}).

But this is simply an instance of the general that representations of a commutative group scheme can be
identified with coherent sheaves on the Cartier dual, see Lemma 6.7 for the explicit version we need here.

�

Lemma 6.7. Let R be a commutative ring and let E be a finite projective R-module. The identity functor
on R-modules lifts to an equivalence of the following categories:

(1) Finite projective R-modules M equipped with an action of Sym∗(E) that is 0 on Sym≥n(E) for
n� 0.

(2) Finite projective R-modules M equipped with a coaction of Γ∗
R(E

∨).

Proof. Let An = Sym∗(E)/Sym≥n(E) be the truncated symmetric algebra, so {An}n≥1 is a projective
system of algebras in Vect(R). Write A∨

n for the R-linear dual, so {A∨
n}n≥1 is an inductive system of

coalgebras in Vect(R). For formal reasons, the identity functor onR-modules gives an equivalence between
An-modules in Vect(R) and A∨

n-comodules in Vect(R). Varying n, this gives
colim

n
ModAn(Vect(R)) ' colim

n
CoModA∨

n
(Vect(R)) = CoModcolimn A∨

n
(Vect(R)),

where the last equivalence follows from the R-finiteness of the comodules involved. The lemma now fol-
lows as the category in (1) is the left side above by definition, while the category in (2) is the right side above:
we have colimnA

∨
n = Γ∗

R(E
∨) as coalgebras since graded R-linear duality carries symmetric algebras to

divided power coalgebras (see [1, Appendix A]). �
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7. Derived relative prismatization

Fix a bounded prism (A, I). In this section, we discuss the relative prismatization functor for derived
schemes, and in the process describe the (derived, and thus classical) prismatization of a qrsp ring. The
main comparison results (Theorem 7.20 and Remark 7.23) extend those in §6 to their natural generality; as
a byproduct, we also obtain a simple perspective on the Hodge–Tate comparison for prismatic cohomology
(Remark 7.7).

In this section all operations (quotients, tensor products, limits, colimits, etc.) are intepreted in the de-
rived sense.

7.1. Definitions.

Construction 7.1 (Derived relative prismatization). For any derived p-adic formal A-scheme X , we define
a presheaf WCartX/A on (p, I)-nilpotent animated A-algebras as follows:

WCartX/A(B) = X(W (B)),

whereW (B) is viewed as an animated δ-A-algebra via adjunction from the structure mapA→ B, and the
mapping space on the right is computed in derived formal A-schemes. Note that WCartX/A(−) is a sheaf
for the étale topology: this follows from the fact that the base change maps give equivalences

Spec(B)ét ← Spf(W (B))ét → Spec(W (B))ét

of étale sites for an (p, I)-nilpotent animatedA-algebraB together with the étale sheaf property ofX itself;
see Lemma 7.3 for a stronger statement when X is qcqs. Moreover, the functor X 7→WCartX/A preserves
arbitrary limits for formal reasons.

Example 7.2 (Derived relative prismatizations in the étale case). LetR/A be a p-complete animatedAwhich
is p-completely étale, i.e., the p-completion L∧

R/A
is 0. By deformation theory, R admits a unique lift to

a (p, I)-complete animated A-algebra R̃ which is (p, I)-completely étale, i.e., the (p, I)-completion L∧
R̃/A

vanishes. We claim that WCartSpf(R)/A identifies with Spf(R̃), where R̃ is endowed with the (p, I)-adic
topology. For this, observe that for any (p, I)-nilpotent animated A-algebra B, the restriction map

Wn+1(B)→Wn(B)

has a nilpotent kernel: asWn(−) commutes with sifted colimits, this follows from Lemma 3.2 (2) as one can
write B as the geometric realization of a simplicial A/(I, pm)-algebras (for some m). In particular, each
Wn(B) is a (p, I)-nilpotent animated A-algebra as well, and the fibre of the above the map is a Wn(B)-
module and thus also (p, I)-nilpotent. Thanks to this observation and the (p, I)-complete étaleness of
A→ R̃, we learn that for any (p, I)-nilpotent animated A-algebra B, the natural maps

MapA(R̃, B)← lim
n

MapA(R̃,Wn(B))→ lim
n

MapA(R̃,Wn(B))←MapA(R̃,W (B)) 'MapA(R,W (B))

are all equivalences. Comparing the first and last term then gives the claim.

Lemma 7.3 (Sheafyness of WCartX/A). For any derived qcqs p-adic formal A-scheme X , the presheaf
WCartX/A is a sheaf for the flat topology on (p, I)-nilpotent animated A-algebras.

Proof. Fix a faithfully flat map B → C of (p, I)-nilpotent animated A-algebras. Write B → C∗ for its
Čech nerve. We must show that

α : X(W (B))→ lim←−X(W (C∗))

is an equivalence. We shall prove this statement when B (and hence C) is discrete, and then deduce the
general statement by deformation theory. Thus, assume until further notice that B and C are discrete.
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As B and C are discrete, we may also assume by adjunction that X is discrete. In particular, both the
source and target of α denote mapping spaces computed in ordinary schemes. The full faithfulness of α
then follows by Tannaka duality2 once we know the full faithfulness of

Dperf(W (B))→ lim←−Dperf(W (C∗)).

The latter can be checked on unit objects, so it would follow by reduction modulo I if we knew thatW (B) '
lim←−W (C∗). But the latter follows by reduction to the analogous statement forWn(−), which can be proven
by induction on n, using the standard exact triangles building the Wn functor from the Wn−1 functor and
the identity functor.

For essential surjectivity of α, fix some map π : Spec(W (C∗)) → X . We must show that π is induced
by a map Spec(W (B)) → X . This statement is obvious when X is affine since W (B) ' lim←−W (C∗) and
similarly after passing to (animated) quotients by I ; we shall explain how to reduce to this case. Fix a
qc open V ⊂ X . Its preimage along π is a Cartesian qc open V ∗ ⊂ Spec(W (C∗)). Now for any (p, I)-
nilpotent animated A-algebra D, base change gives equivalences

Spec(D)ét ← Spf(W (D))ét → Spec(W (D))ét

of étale sites, and similarly for Zariski sites. Using this equivalence for the cosimplicial (p, I)-nilpotent
A-algebra C∗, we can transport V ∗ across the equivalence to obtain a Cartesian qc open U∗ ⊂ Spec(C∗).
By faithful flatness of B → C and flat descent for qc open subsets, any such qc open is the pullback of a qc
open U ′ ⊂ Spec(B). Using the above equivalence of sites for B now, we learn that V ∗ is the preimage of a
qc open V ′ ⊂ Spec(W (B)). By the affine case of the theorem, we obtain a unique map V ′ → V inducing π.
Glueing these constructions together for variable V ⊂ X then gives the desired map Spec(W (B)) → X
inducing π.

It remains to explain how to pass from the discrete case to the general case via deformation theory, so
assume now that B is an arbitrary (p, I)-nilpotent animated A-algebra. Then for each integer n ≥ 1, the
natural animated A-algebra map W (τ≤nB)→ W (τ≤n−1B) has fibre Fn(B) concentrated in homological
degree n: the fibre identifies with

∏
N πn(B)[n] as a space via the Witt component maps. In particular, this

map naturally a square-zero extension ofW (τ≤n−1B) byFn(B) in animatedA-algebras. Reducing modulo
I shows that the map W (τ≤nB) → W (τ≤n−1B) is naturally a square-zero extension of W (τ≤n−1B) by
Fn(B)⊗AA in animatedA-algebras. Applying a similar analysis to the Postnikov tower for C∗, the claim
follows by deformation theory once we observe that that the mapW (τ≤n(B → C)) yields an isomorphism
Fn(B) ' lim←−Fn(C

∗) by the flatness assumption on B → C. �

Warning 7.4 (Derived prismatization might differ the classsical one). Assume X is an ordinary p-adic
formal A-scheme; for the purpose of this warning, write Xder for the result of viewing X as a derived for-
mal A-scheme. Construction 7.1 gives a presheaf WCartXder/A on all (p, I)-nilpotent animated A-algebras
whose restriction to the discrete ones coincides with the relative prismatization WCartX/A from Vari-
ant 5.1. Write L(WCartX/A) for the extension of WCartX/A to a presheaf on all (p, I)-nilpotent an-
imated A-algebras (via left Kan extension of the usual inclusion on affine objects), so there is a natural
map L(WCartX/A) → WCartXder/A. In general, this map fails to be an isomorphism or even identify
the target with the flat sheafification of the source; for instance, one can show3 this disagreement happens
over (A, I) = (Zp, (p)) with X = Spec(Fp[x, y]/(x, y)

2). In particular, the results we shall soon prove on
2We are using the spectral version [16, §9] of Tannaka duality here. A priori, this only describes mapping spaces in spectral

algebraic geometry in terms of functors on perfect complexes. However, the functor from derived schemes to spectral schemes is
fully faithful on derived schemes with a 1-truncated structure sheaf, so a posteriori we obtain descriptions of mapping spaces in
derived algebraic geometry as well.

3To see this, observe that R�(L(WCartX/A),O) ' R�(WCartX/A,O) is cococonnective as it is the cohomology complex of
a sheaf of discrete rings in a topos. On the other hand, by Theorem 7.20 (1)), R�(WCartXder/A,O) is identified with the derived
crystalline cohomology of Fp[x, y]/(x, y)

2, and thus has cohomology in (infinitely many) negative degrees by the derived Cartier
isomorphism.



28 BHARGAV BHATT AND JACOB LURIE

R�(WCartXder/A,O) (such as the comparison with prismatic cohomology in Theorem 7.20 (1)) do not apply
to R�(WCartX/A,O) in general.

On the positive side, if the affine opens in X satisfy condition (∗) from Remark APC.4.1.18 , then the
natural map L(WCartX/A) → WCartXder/A exhibits the target as the flat sheafification of source (see
Remark 7.23); in particular, this extends Theorem 6.4 to all such X ’s.

We shall need the following variant of Lemma 6.3:

Proposition 7.5 (Prismatization preserves p-quasisyntomic covers). Let f : X → Y be a p-quasisyntomic
cover of derived p-adic formal A-schemes. Then WCartf : WCartX/A →WCartY /A is surjective locally
in the flat topology.

Proof. This follows by the same proof as the one given for Lemma 6.3. �

7.2. The derived Hodge-Tate stack.

Construction 7.6 (The derived Hodge-Tate stack). For any derived p-adic formal A-scheme X , we define

WCartHT
X/A := WCartX/A×Spf(A)Spf(A).

Since we are working with derived schemes, we have4 the base change formula

R�(WCartHT
X/A,O) ' R�(WCartX/A,O)⊗L

A A (2)

for derived global sections. Moreover, the proof of Proposition 5.12 applies in the animated context as
Construction 5.10 was formulated and proven for all p-nilpotent animated A-algebras. Thus, we learn:
for any smooth p-adic formal A-scheme X , the structure map WCartHT

X/A → X is a gerbe banded by
TX/A{1}] that splits if X comes endowed with a lift to a smooth (p, I)-adic formal A-scheme equipped
with a δ-structure.

Remark 7.7 (A direct proof of the Hodge-Tate comparison via the prismatization). Fix a p-completely
smoothA-algebraR. Using results from prismatic cohomology (especially the Hodge-Tate comparison and
its consequences such as André’s lemma), we shall prove in the forthcoming Theorem 7.20 that �′

R/A :=

R�(WCartSpf(R)/A,O) is naturally identified with �R/A. On the other hand, it is possible to prove the
basic results on prismatic cohomology directly for �′

R/A using the stacky perspective, with arguably more
conceptual proofs. Let us sketch how to do so for the Hodge-Tate comparison.

First, using (2), we construct the comparison map

cR : (Ω∗
R/A

, d)→ (H∗(�′
R/A ⊗A I

∗/I∗+1), βI)

of commutative differential graded algebras as in [3, Construction 4.9]; when p = 2, one needs to know
that the target is a strict cdga (i.e., odd degree elements square to 0), which will actually follow from the
subsequent discussion. To prove this map is an isomorphism, we are allowed to make choices, so choose a
lift ofR to (p, I)-completely smoothA-algebra R̃ endowed with a δ-structure. As mentioned in Construc-
tion 7.6, the map WCartHT

Spf(R)/A → Spf(R) is the trivial gerbe banded by TSpf(R)/A{1}] (with trivialization
determined by the choice R̃ with its δ-structure), so we get a natural isomorphism

�R′/A ⊗A A ' R�(WCartHT
Spf(R)/A,O) ' R�(BTSpf(R)/A{1}

],O)

4Given a presheaf F on (p, I)-nilpotent animated A-algebras, we can write F = colimR∈CF Spec(R) tautologically as the
colimit of its ∞-category CF of points, so we have R�(F,O) ' lim←−R∈CF

R. Its pullback F ×Spf(A) Spf(A) to p-nilpotent A-
algebras can then be described as colimR∈CF Spec(R/t), yielding

R�(F ×Spf(A) Spf(A),O) ' lim←−
R∈CF

R/t ' ( lim←−
R∈CF

R)/t ' R�(F,O)/t.

Note that it is critical here that the operation of reduction mod t is intepreted everywhere in the animated sense, and thus commutes
with (derved) limits. In particular, this argument does not work in ordinary algebraic geometry.
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of commutative algebras in D(R). By Lemma 7.8, we have an isomorphism

�′
R/A ⊗

L
A A '

⊕
i

Ωi
R/A
{−i}[−i]

of E∞-R-algebras. One can then check that the induced isomorphism on cohomology rings agrees (after
Breuil-Kisin untwisting) with the map cR, thus showing the latter is an isomorphism, and thus proving the
Hodge-Tate comparison.

Lemma 7.8. Given a commutative ringR and a finite projectiveR-moduleE , there is a natural isomorphism

R�(BE],O) '
⊕
i

∧iE∨[−i]

of E∞-R-algebras.

Proof. The induced statement on cohomology rings is standard and we omit to the proof. To obtain for-
mality (i.e., pass from cohomology rings toE∞-R-algebras), observe that there is a natural Gm-action onE
(givingE weight 1), which induces an action on all objects encountered above, so R�(BE],O) is naturally a
Gm-equivariantE∞-R-algebra. It is therefore enough to show that for any Gm-equivariantE∞-R-algebra
C with the property that H i(C) is a flat R-module with Gm-weight −i, there is a unique Gm-equivariant
isomorphism C ' ⊕iH

i(C)[−i] of E∞-R-algebras inducing the identity on cohomology. This follows
by weight considerations: the∞-category C1 of Gm-equivariantR-complexesK withH i(K) beingR-flat
with Gm-weight −i is an ordinary category, the symmetric monoidal cohomology functor identifies C1
with the ordinary category C2 of graded R-modules M where Mi is R-flat with Gm-weight −i, and the
inverse C2 → C1 is given by sending a graded R-module ⊕iMi ∈ C2 to the complex ⊕iMi[−i] ∈ C1. �

Remark 7.9 (Understanding crystalline cohomology via ring stacks). The ring stack perspective on p-adic
cohomology theories emphasized by Drinfeld [7, 8, 9] makes certain structures easy to see. We have already
seen one example in our analysis of the Hodge-Tate gerbe (Proposition 5.12), which relies crucially on
the square-zero extension from Construction 5.10. Another basic structural result in this direction is the
isomorphism

Ga/G]
a 'W/p (3)

of ring stacks on p-nilpotent rings. This follows from the sequence of identifications of ring stacks

Ga/G]
a 'W/(VW ⊕G]

a)
F'W/FVW 'W/p

where the first identification comes from writing Ga = W/VW , the second is induced by the Frobenius
on W and the observation that F∗W = W/G]

a, and the last uses FV = p (see [8, Proposition 3.5.1]). Let
us briefly summarize why (3) encodes some important features of crystalline cohomology.

(1) Given a Zp-flat p-adic formal scheme X , one may define its crystallization Xcrys as the presheaf on
all p-nilpotent rings defined by the formula

Xcrys(S) = X
(
(Ga/

LG]
a)(R)

)
.

There is a natural map ε : X → Xcrys induced by the map Ga → Ga/G]
a of ring stacks. When

X is a smooth formal W (k)-scheme for a perfect field k, one can show that ε is a quasisyntomic
surjection, and the n-th term of its Čech nerve identifies with the PD-envelope of X ⊂ Xn. By
Čech-Alexander theory, it follows that

R�(Xcrys,O) ' R�crys(X/W (k)), (4)

justifying the notation. To proceed further, we use the crystalline-de Rham comparison to rewrite
the previous isomorphism as

R�(Xcrys,O) ' R�dR(X/W (k)). (5)
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Now the ring stack Ga/G]
a is annihilated by p: this is clear from (3) and may also be seen directly

by observing that p ∈ Zp = Ga(Zp) lies in G]
a(Zp) ⊂ Ga(Zp). It follows that the stack Xcrys only

depends on the mod p reductionXp=0 ofX . Via (5), this provides a stacky explanation for the fact
that the de Rham cohomology complex R�dR(X/W (k)) only depends on Xp=0 and not its lift X .

(2) Fix a perfect field k of characteristic p and a smooth k-scheme Y . Define the presheaf Y crys on
k-algebras via

Y crys(R) = Y ((Ga/
LG]

a)(R)).

The isomorphism (3) yields an identification

Y crys 'WCartHT
Y /W (k)

of presheaves on k-algebras. Thus, the quasi-coherent derived∞-categoryDqc(Y
crys) of Y crys iden-

tifies with the∞-categoryD((Y /W (k))�,O�) of Hodge-Tate crystals on (Y /W (k))� from Theo-
rem 6.5. In particular, as in Corollary 6.6, the category Vect(Y crys) of vector bundles on Y crys may
be described via Higgs bundles.

On the other hand, the Čech-Alexander argument given to justify (4) in (1) above shows that
the category Vect(Y crys) can identified with the category of crystals on (Y /k)crys, i.e., with the
category Vect∇(Y /k) of vector bundles on Y /k equipped with a flat connection relative to kwhose
p-curvature is nilpotent.

Combining the previous two paragraphs gives the promised relationship between flat vector bun-
dles and Higgs bundles. This relationship has been studied in depth in upcoming work of Ogus.

7.3. Affineness of WCartX/A. Our next goal is to explain why the prismatization WCartX/A is an “affine
stack” (see [24] for the non-derived analog) when X is affine; to even formulate the statement, we need the
notion of a “non-connective animated ring” that was recently discovered by Mathew.

Notation 7.10 (Derived rings, following Mathew). For any (animated) ring R, write DAlgR for Mathew’s
∞-category of derived R-algebras (see the exposition in [21]). Recall that this notion extends the theory
of animated rings to the non-connective setting. In particular, any derived R-algebra has an underlying
E∞-R-algebra, the connective derived R-algebras exactly the animated ones, and the∞-category DAlgR
has all limits and colimits whose formation commutes with the forgetful functor to E∞-R-algebras. In
particular, given a p-complete animated A-algebra S , the E∞-A-algebra �S/A is naturally a derived A-
algebra.

Construction 7.11 (Relating classical and animated prismatic sites). Let R be a p-complete animated A-
algebra. Consider the ∞-category (R/A)an

� of pairs (B, v) where B is a (p, I)-complete animated δ-A-
algebra and v : R → B is a map of animated A-algebras; this∞-category contains the relative prismatic
site (π0(R)/A)� ofπ0(R) as the full subcategory spanned by (B, v)withB being discrete and I-torsionfree.
Consequently, there is a comparison map

cR : lim←−
(B,v)∈(R/A)an

�

B → lim←−
(B,v)∈(π0(R)/A)�

B

in DAlgA.

Proposition 7.12. The comparison map cR from Construction 7.11 is an isomorphism if R is p-completely
smooth over A.

Proof. We first recall the Čech-Alexander approach to prismatic cohomology in [3, Construction 4.17].
Take a surjection B0 → B0/J = R with B0 a polynomial ring over A, let B′ be the free δ-A-algebra on
B0, and let B to be the (p, I)-completed prismatic envelope of JB′ ⊂ B′. Then (B, IB) is weakly initial
in (R/A)� and its Čech nerve (C∗, IC∗) in (R/A)� satisfies that the derived A-algebra C∗ computes the
limit lim←−(B,v)∈(R/A)�

B.
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We wish to apply the same analysis to conclude that C∗ also computes lim←−(B,v)∈(R/A)an
�
B. For this, we

need to verify that (B, IB) is weakly initial in (R/A)an
� , and that its Čech nerve (C∗, IC∗) in (R/A)�

coincides with the animated Čech nerve in (R/A)an
� . The first holds true as free δ-algebras on polynomial

rings are also free in the animated sense, and because the prismatic envelope appearing in the formation
of B from B′ coincides with its animated version by the construction in [3, Corollary 3.14]. The second
property follows again from the same observation concerning the formation of prismatic envelopes. �

Corollary 7.13. Given a p-complete animated A-algebra R and some (C,w) ∈ (R/A)an
� as in Construc-

tion 7.11, there is a natural comparison map �R/A → C of derived A-algebras, uniquely characterized by
the requirement that it agrees for p-completely smooth A-algebra R with the map

�R/A ' lim←−
(B,v)∈(R/A)�

B
cR' lim←−

(B,v)∈(R/A)an
�

B
project−−−→ C,

where the first isomorphism is the agreement of derived and site-theoretic prismatic cohomology for such
R.

Remark 7.14. Remark 7.23 below extends Proposition 7.12 extends to a larger class of A-algebras R: we
only need to assume that R satisfies condition (∗) from Remark APC.4.1.18 . On the other hand, using
Theorem 7.20 (1) as well as the failure of derived prismatic cohomology to coincide with its site-theoretic
version in general shows that the proposition fails, e.g., when (A, I) = (Zp, (p)) and R = Fp[x, y]/(x, y)

2.

Definition 7.15 (The spectrum of �R/A). For any p-complete animated A-algebra R, write

Spf(�R/A) = MapDAlgA
(�R/A,−)

for the S-valued functor corepresented by �R/A on (p, I)-nilpotent animated A-algebras.

Construction 7.16 (Relating Spf(�R/A) to the prismatization). Fix a p-complete animated A-algebra with
formal spectrum X = Spf(R). Given a point of WCartX/A corresponding to a (p, I)-nilpotent animated
A-algebra B and an A-algebra map v : R→W (B), we obtain an induced map

�(v) : �R/A → �
W (B)/A

of derived A-algebras. On the other hand, regarding W (B) as an animated (p, I)-complete δ-A-algebra
equipped with the identity map W (B)

id−→W (B), Corollary 7.13 yields a natural map

canB : �
W (B)/A

→W (B)

of derived A-algebras. Postcomposing with the restriction map gives a natural (in v) composition

α(v) : �R/A
�(v)−−→ �

W (B)/A

canB−−−→W (B)
restrict−−−−→ B

of maps in DAlgA. The construction carrying v to α(v) yields a natural transformation

αR : WCartSpf(R)/A → Spf(�R/A)

of presheaves on (p, I)-nilpotent animated A-algebras.

Theorem 7.17 (Affineness of the prismatization). The map αR from Construction 7.16 is an isomorphism
for all p-completed animated A-algebras R.

Proof. We first observe that the proof of Variant 6.2 applies directly in this setting to solve the problem
whenR is a relative regular semiperfectoid as in Variant 6.2. We now begin proving the theorem in general
by reducing to this case. As both the source and target of αR carry colimits in R to limits, we may reduce
to checking the statement for R = A[x]∧ being the p-completed polynomial ring. Write S = A[x1/p

∞
]∧
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for the naive perfection of R. Note that the map R → S is a p-quasisyntomic cover; write S∗ for its Čech
nerve. We then have a map of augmented simplicial objects:

WCartSpf(S∗)/A
αS∗ //

��

Spf(�S∗/A)

��
WCartSpf(R)/A

αR // Spf(�R/A).

Now the augmented simplicial object given by each column is a Čech nerve: this follows for the left side
as WCart−/A commutes with limits, and for the right side as �−/A commutes with colimits. Moreover,
the augmented simplicial object on the left identifies the target with the colimit of the source after flat
sheafification by Proposition 7.5. If we can show the same for the augmented simplicial object on the right,
we will be done as the map αS∗ is an isomorphism of simplicial objects by the first sentence of the proof.
Thus, we are reduced to checking that the map

Spf(�S/A)→ Spf(�R/A)

is surjective for the flat topology. To show this statement, it is enough to show the following:
(∗) For any (p, I)-complete animated A-algebra B equipped with a map �R/A → B of derived A-

algebras, the base change B′ := B⊗̂�R/A
�S/A is a connective derived A-algebra (and thus an ani-

mated A-algebra) which is a (p, I)-completely faithfully flat over B.
Note that to prove (∗), we may ignore the derived algebra structures and simply work at the level of

modules. In this case, it suffices to prove the following stronger assertion purely about the map �R/A →
�S/A: the �R/A/p-module �S/A/p admits an increasing exhaustive N-indexed filtration whose graded
pieces are free over �R/A/p. For this, observe that the A-algebra map R → S lifts to a δ-map R̃ :=

A[x]∧ → S̃ := A[x1/p
∞
]∧ of (p, I)-completely flat δ-A-algebras (where δ(x) = 0). It follows that the

Hodge-Tate gerbe WCartHT
R/A → Spf(R) for Spf(R) (Proposition 5.12) admits a trivialization (Remark 5.13

(1)) compatibly with the isomorphism WCartHT
S/A → Spf(S) (Example 7.2), i.e., we obtain a commutative

diagram
Spf(S) //

s
S̃

��

Spf(R)

s
R̃

��
WCartHT

Spf(S)/A
//

πHT
S

��

WCartHT
Spf(R)/A

πHT
R

��
Spf(S) // Spf(R)

where the maps labelled πHT are the Hodge-Tate structure maps and are gerbes for 0 and TSpf(R)/A{1}
respectively, the maps labelled s

S̃
and s

R̃
are are sections to πS and πR arising from the choices of the δ-

lifts S̃ and R̃ respectively, the left vertical maps are all isomorphisms, the horizontal maps are the structure
maps induced by theA-algebra mapR→ S , and the commutativity of the top square in the diagram arises
the existence of the δ-A-algebra map R̃→ S̃ lifting R→ S. Using s

R̃
to trivialize the gerbe πHT

R gives an
isomorphism

�R/A '
⊕
i

Ωi
R/A
{−i}[−i]

E∞-R-algebras (see second half of Remark 7.7). By the commutative diagram above, this isomorphism
carries the map �R/A → �S/A ' S to the composition⊕

Ωi
R/A
{−i}[−i]→ R→ S
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where first map is the canonical augmentation and the second map is the structure map. As S is clearly
p-completely free over R, it suffices to show that the

(⊕
iΩ

i
R/A
{−i}[−i]

)
/p-module R/p admits an in-

creasing exhaustive N-indexed filtration whose graded pieces are free; this is a standard calculation, see [3,
Proof of Lemma 8.6]. �

Corollary 7.18 (The prismatization of a semiperfectoid). SayR is a p-completeA-algebra such thatΩ1
(π0(R)/p)/(A)

=

0; for instance, this holds true if π0(R)/p is a semiperfect ring. Then �R/A is an animated A-algebra and
corepresents WCartSpf(R)/A.

Proof. The assumption on R ensures that the p-completion
(
∧iLR/(A)

)
[−i]∧ is connective. The Hodge-

Tate comparison then shows that �R/A is a connective derived A-algebra, whence it is an animated A-
algebra. The rest follows from Theorem 7.17. �

7.4. Comparison with derived prismatic cohomology.

Construction 7.19 (Relating �R/A with R�(WCartSpf(R)/A,O)). LetX be a p-adic formal derivedA-scheme.
Following Construction APC.4.2.1 , define

R��(X/A) = lim←−
Spf(R)→X

�R/A,

where the inverse limit is indexed by the∞-category of points ofX ; by Zariski descent for �−/A, we could
also take the inverse limit over the poset of affine opens in X without changing the result. (Note that
whenX is classical, this object coincides with the one from Construction APC.4.2.1 , so there is no conflict
of notation: this is clear when X is affine, and the rest follows from the Zariski descent property of both
constructions.)

When X = Spf(S) is affine, the construction v 7→ α(v) in Construction 7.16 yields on passage to limits
a natural comparison map

βX : �S/A → R�(WCartX/A,O).
As both sides are sheaves in the Zariski topology, this globalizes to a comparison map

βX : R��(X/A)→ R�(WCartX/A,O)
for all X .

Theorem 7.20 (Relating prismatic cohomology to the prismatization). Let X be a p-adic formal derived
A-scheme. Assume that one the following conditions holds true:

(1) (Finite type) For every affine open Spf(R) ⊂ X , the π0(R)/p-module Ω1
(π0(R)/p)/(A)

is finitely
generated.

(2) (Quasi-lci) The derived formal scheme X is classical, bounded, and LX/A ∈ D(X) has p-complete
Tor amplitude≥ −1 (i.e., for each affine open Spf(R) ⊂ X , the A-algebra R satisfies condition (∗)
from Remark APC.4.1.18 ).

Then the map
βX : R��(X/A)→ R�(WCartX/A,O)

is an isomorphism.

Note that the first condition is satisfied as soon as the mod p reduction of the classical truncation of X
has finite type over A/(I, p).

Proof. We may assume X = Spf(R) is affine. Thus, we want to show that the map
βR : �R/A → R�(WCartSpf(R)/A,O)

is an isomorphism. We do so via descent in both cases (1) and (2).
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Assume we are in case (1). Fix f1, ..., fn ∈ π0(R)/p whose elements generate the module of Kähler
differentials Ω1

(π0(R)/p)/(A)
. We can then choose a map S := A[x1, ..., xn]

∧ → R carrying xi to fi in

π0(R)/p. Write S∞ = A[x
1/p∞

1 , ..., x
1/p∞
n ]∧ for the mock perfection of S , write R∞ = S∞⊗̂SR for its

base change toR, and letS → S∗
∞ andR→ R∗

∞ be the Čech nerves ofS → S∞ andR→ R∞ respectively.
We then have the commutative diagram

�R/A
//

��

R�(WCartSpf(R)/A),O)

��
�∗
R∞/A

// R�(WCartSpf(R∗
∞)/A,O)

of augmented cosimplicial objects. Note that the mapR→ R∞ is a p-quasisyntomic cover. Since prismati-
zation commutes with limits and carries p-quasisyntomic covers to flat covers (Proposition 7.5), the map on
the right is a limit diagram, i.e., identifies the source with the limit of the target. As eachR∗

∞ is semiperfect
modulo p on π0, Corollary 7.18 shows that the bottom arrow is an isomorphism of cosimplicial objects. It is
therefore enough to show that the map on the left gives a limit diagram. Now, by base change for prismatic
cohomology, the map on the left is obtained from

�S/A → �S∗
∞/A

by applying −⊗̂�S/A
�R/A. As �−/A commutes with colimits, the map �S/A → �S∗/A identifies with the

Čech nerve of �S/A → �S∞/A. But this last map is descendable modulo (p, I), as explained in the proof
of Theorem 7.17. Consequently, the (p, I)-completed base change of its Čech nerve to any �S/A-algebra
gives a limit diagram, so we win.

Assume we are in case (2). Let R → R∞ be the p-quasisyntomic cover of R obtained by formally ex-
tracting p-power roots of all elements of R; let R → R∗

∞ be its Čech nerve. The map R → R∞ is a
p-quasisyntomic cover, and each R∗

∞ is semiperfect modulo p. Running the same argument as the one
above, it remains to verify that �R/A ' lim←−�R∗

∞/A. But this follows as functor �−/A is a sheaf for the
relevant map (Theorem APC.4.3.6 ). �

Next, we discuss a criterion for the WCartX/A to be a classical stack; let us first introduce the necessary
language for the latter notation.

Notation 7.21 (Classical sheaves on derived formal affineA-schemes). Write DAffSpf(A) for the opposite of
the∞-category of (p, I)-nilpotent animatedA-algebras; let AffSpf(A) ⊂ DAffSpf(A) be the full subcategory
spanned by the discrete rings. We give these two ∞-categories the flat topology5. Let us call a sheaf F
on DAffSpf(A) classical if it can be written as a colimit of objects lying in the essential image of AffSpf(A)

under the Yoneda embedding; this is equivalent to requiring that F lies in the essential image of the fully
faithful6 colimit preserving functor Shv(AffSpf(A))→ Shv(DAffSpf(A)) extending the Yoneda embedding.

Proposition 7.22 (Classicality of the prismatization). LetX be a bounded p-adic formalA-scheme, regarded
as derived A-scheme. Assume that LX/A ∈ D(X) has p-complete Tor amplitude≥ −1 (i.e., for each affine
open Spf(R) ⊂ X , the A-algebra R satisfies condition (∗) from Remark APC.4.1.18 ). Then WCartX/A is
classical.
Proof. By compatibility with étale localization, we may assume X = Spf(R) is affine. It suffices to show
that WCartX/A can be written as a colimit of a simplicial object in the full subcategory AffSpf(A) ⊂
DAffSpf(A). Take R → R∗

∞ as in the second paragraph of the proof of Theorem 7.20. By construction,

5We use the flat topology for maximal flexibility. The p-quasisyntomic topology (or even the pro-syntomic topology) would
suffice for our purposes.

6To see full faithfulness, one uses the following: any faithfully flat map U → V in DAffSpf(A) with V ∈ AffSpf(A) comes from
a faithfully flat map in AffSpf(A) (i.e., U ∈ AffSpf(A)) by definition of flatness.
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each �R∗
∞/A is discrete, and thus WCartSpf(R∗

∞)/A ' Spf(�R∗
∞/A) is classical by Theorem 7.17. As the

prismatization functor WCart−/A commutes with limits and carries p-quasisyntomic surjections to flat
covers (Proposition 7.5), it follows that WCartSpf(R)/A is the the colimit of Spf(�R∗

∞/A) as flat sheaves on
DAffSpf(A), so we win. �

Remark 7.23. Using Proposition 7.22 and Corollary 7.18 instead of Variant 6.2, one checks that the conclu-
sions of Theorems 6.4 and 6.5 hold true for any X/A as in Proposition 7.22.
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8. Derived absolute prismatization

In this section, we construct a Cartier–Witt stack WCartX for any derived p-adic formal schemeX using
the notion of a Cartier–Witt divisor in the animated context (Definition 8.2). The main results are that
under p-quasisyntomicity assumptions, the theory of quasi-coherent sheaves on these stacks geometrizes the
theory of absolute prismatic crystals (Proposition 8.15), and that this geometrization is compatible with the
notion of pushforwards in a reasonably wide variety of situations (Corollary 8.16). As all the results are
proven by reducing to the relative case treated in §7, our proofs will be brief.

Notation 8.1 (Classical sheaves on p-adic formal affine schemes). Write DAff for the opposite of the∞-
category of p-nilpotent animated rings; let Aff ⊂ DAff be the full subcategory spanned by the discrete
rings. We give these two∞-categories the flat topology. As in Notation 7.21, let us call a sheaf F on DAff
classical if it can be written as a colimit of objects lying in the essential image of Aff under the Yoneda
embedding γ : DAff ↪→ Shv(DAff) or equivalently if F lies in the essential image of the fully faithful
functor γ̃ : Shv(Aff)→ Shv(DAff). For F classical, there is a unique object G ∈ Shv(Aff) equipped with
an identification γ̃(G) ' F ; in this case, we often abuse notation and say that G represents F .

Recall from Construction 2.1 that for an animated ring A, the notion of a generalized Cartier divisors
A → A/I on A is equivalent to the notion of generalized invertible ideals I → A in A. Using this
equivalence, we arrive at the main object of study of this section:

Definition 8.2 (Cartier–Witt divisors on animated rings). For a p-nilpotent animated ring R, a Cartier–
Witt divisor on R is given by a generalized Cartier divisor W (R) → W (R)/I whose corresponding gen-
eralized invertible ideal I → W (R) induces a Cartier–Witt divisor on π0(R) (as in APC.3.1.1 ) after base
change alongW (R)→W (π0(R)) ' π0(W (R)). Thus, the space of Cartier-Witt divisors onR is discreted
as the fibre product

[A1/Gm](W (R))×[A1/Gm](W (π0(R))) WCart(π0(R)).

Remark 8.3 (Cartier–Witt divisors as animated prisms). Given a p-nilpotent animated ringR, one can also
define a Cartier-Witt divisor on R to be an animated prism W (R) → W (R)/I (as in Definition 2.4, for
the usual animated δ-structure on W (R)) such that the induced map π0(I)→ π0(W (R))

restriction−−−−−→ R has
nilpotent image; this follows from Remark 2.11.

Proposition 8.4 (The Cartier–Witt stack as a derived stack). The presheaf F carrying a p-nilpotent ani-
mated ring R to the space of Cartier–Witt divisors on R is a sheaf, is classical, and represented by WCart.

Proof. For any p-nilpotent animated ring R, we have a natural identification of spaces Pic(W (R)) '
limn Pic(Wn(R)). Using this identification and deformation theory, it follows from flat descent for line
bundles that the functor Pic(W (−)) on p-nilpotent animated rings is a sheaf for the flat topology, is classi-
cal, and represented byBW ∗. A similar argument with maps shows that the functor carrying a p-nilpotent
animated ring R to the space of generalized Cartier divisors on W (R) is a sheaf and in fact represented by
[W/W ∗](−) ' [A1/Gm](W (−)). The sheafyness of the functor in the proposition then follows from the
corresponding statement for p-nilpotent discrete rings.

For the rest, we shall check thatF is represented by WCart using the presentation WCart = [WCart0 /W ∗]
from Proposition APC.3.2.3 . Using this presentation and unwinding definitions, it is enough to check that
the functor

R 7→ A1(W (R))×A1(W (π0(R))) WCart0(π0(R)) 'W (R)×W (π0(R)) WCart0(π0(R)).
on p-nilpotent animated rings is represented by WCart0. This follows from the fact that the natural map
WCart0 →W also exhibits the former as a formal completion of the latter in derived algebraic geometry.

�

In the rest of this section, we abuse notation and identify the quotient stack WCart with the functor F
on DAff from Proposition 8.4.
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Remark 8.5. Proposition 8.4 implies our previous results [2] on WCart translate over to the derived setting.
For instance, for any bounded prism (A, I), we have a natural classifying map ρA : Spf(A) → WCart of
sheaves on DAff by Construction APC.3.2.4 . Moreover, if (A•, I•) is the cosimplicial prism from Nota-
tion APC.3.3.9 obtained by taking global sections of the standard simplicial presentation of the quotient
stack [WCart0 /W ∗], then the maps ρA• yield an equivalence

colim Spf(A•) 'WCart
in Shv(DAff).

Definition 8.6 (The Cartier–Witt stack of a derived scheme). Let X be a derived p-adic formal scheme.
Its Cartier–Witt stack WCartX is the presheaf on p-nilpotent animated rings as follows: WCartX(R) is
the∞-groupoid of pairs (I α−→ W (R), η : Spec(W (R)) → X), where (I

α−→ W (R)) ∈ WCart(R) is a
Cartier-Witt divisor and η is a morphism of derived formal schemes.

Warning 8.7. Say X is a bounded p-adic formal scheme; write Y for the result of viewing X as a derived
p-adic formal scheme. Then the Cartier–Witt stack WCartY need not be classical (and thus does not agree
with the image of WCartX under the fully faithful embedding Shv(Aff)→ Shv(DAff)): this follows from
the example in Warning 7.4 observing that WCartY 'WCartY /A for a derived qcqs p-adic formal scheme
X equipped with a map to Spf(A) for a perfect prism (A, I), and similarly in the non-derived case.

Example 8.8. For the final object X = Spf(Zp) in DAff, the stack WCartX is represented by WCart. By
functoriality, there is an induced structure map WCartY → WCart for any qcqs derived p-adic formal
scheme Y .

Remark 8.9. The functor X 7→ WCartX on derived p-adic formal schemes naturally takes values in
presheaves over WCart, and commutes with all limits when viewed as such: this compatibility is immediate
from the definition.

Remark 8.10. Fix a derived p-adic formal scheme X . Then WCartX is a sheaf for the étale topology as
in Construction 7.1. Moreover, if X is qcqs, then the argument in Lemma 7.3 applies mutatis mutandis to
show that WCartX is a sheaf for the flat topology.

Remark 8.11. Fix a derived p-adic formal scheme X . If (A, I) is a bounded prism, then we have a base
change isomorphism

WCartX ×WCart,ρASpf(A) 'WCartXA/A

of sheaves on (p, I)-nilpotent animated A-algebras, where the target is the derived relative prismatiza-
tion studied in §7. Applying this observation to the cosimplicial bounded prism (A•, I•) from Nota-
tion APC.3.3.9 and using the observation in Remark 8.5, we learn that the maps ρA• induce an equivalence

colim WCartX
A
•/A 'WCartX ,

and hence that pullback along ρA• induces an equivalence
Dqc(WCartX) ' limDqc(WCartX

A
•/A)

of symmetric monoidal stable∞-categories.

In the rest of this section, we focus on relating the theory of quasi-coherent sheaves on the Cartier–Witt
stacks defined above with the absolute prismatic site. This comparison works best for the following class
of schemes:

Definition 8.12. A derived p-adic formal schemeX is called p-quasisyntomic if for every affine open Spf(R) ⊂
X , the animated ringR is classical and p-quasisyntomic. In particular,X is a classical bounded p-adic formal
scheme.

Corollary 8.13. Let X be a derived p-adic formal scheme which is p-quasisyntomic. Then WCartX is
classical.
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Proof. Using the equivalence colim WCartX
A
•/A ' WCartX from Remark 8.11, it suffices to show that

WCartXA/A is classical for every transversal prism (A, I). The hypothesis on X and the transversality of
(A, I) ensure that the structure mapXA → Spf(A) satisfies the hypothesis of Proposition 7.22, so the claim
follows from the conclusion of that proposition. �

Construction 8.14 (From the absolute prismatic site to the derived Cartier–Witt stack). Fix a derived p-adic
formal schemeX . The absolute prismatic siteX� is defined to be the (ordinary) category of bounded prisms
(A, I) equipped with a map η : Spf(A/I) → X of derived p-adic formal schemes; when X is a classical
bounded p-adic formal scheme, this definition agrees with the classical notion of the absolute prismatic site
of X . For any object ((A, I), η) ∈ X�, one has an induced map ρX,A : Spf(A)→WCartX by a variant of
Construction 3.10.

Proposition 8.15. LetX be a derived p-adic formal scheme which is p-quasisyntomic. Then pullback along
the maps from Construction 8.14 yields an equivalence

Dqc(WCartX) ' lim
(A,I)∈X�

D̂(A) =: D̂crys(X�,O�)

of symmetric monoidal stable∞-categories.

Proof. The relative version of this was the subject of Theorem 6.5 and Remark 7.23. The general case can be
reduced by descent to the relative case using Remark 8.11 on the WCart side, and flat descent for prismatic
crystals on the site-theoretic side. �

Proposition 8.16. Let Y be a derived p-adic formal scheme which is p-quasisyntomic. Let f : X → Y be a
map of qcqs derived p-adic formal schemes that satisfies one of the following conditions:

(1) Finite type: for every affine open Spf(R) ⊂ Y and Spf(S) ⊂ f−1(Spf(R)) ⊂ X , the π0(R)/p-
module Ω1

π0(S)/π0(R)/p is finitely generated.

(2) p-quasisyntomic: for every affine open Spf(R) ⊂ Y and Spf(S) ⊂ f−1(Spf(R)) ⊂ X , the map
R→ S is p-quasisyntomic after base change to any discrete p-nilpotent R-algebra.

Then the right adjoint RWCartf,∗ to the pullback f∗ : Dqc(WCartY )→ Dqc(WCartX) carriesOWCartX
to an object ofDqc(WCartY ) that identifies naturally with the prismatic crystalRf�,∗O� ∈ Dcrys(Y�,O�)
under the equivalence in Proposition 8.15.

Proof. This follows via the descent equivalence in Proposition 8.15 from the corresponding result in the
relative case (Theorem 7.20). �

Corollary 8.17. Let X be a qcqs derived p-adic formal scheme. Assume that the structure map f : X →
Spf(Zp) satisfies one of the conditions in Proposition 8.16. Then RWCartf,∗OWCartX ∈ Dqc(WCart) is
identified withH�(X) (Variant APC.4.4.6 ).

Proof. Apply Proposition 8.16 with Y = Zp and use the definition in Variant APC.4.4.6 . �
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9. Examples: The Hodge-Tate stack of some regular schemes

One philoshophical perspective on prismatic cohomology is that it yields a de Rham style cohomology
theory “over F1”. While nonsensical, this sometimes can lead to useful predictions, e.g., one expects that
regular rings of dimension d are formally smooth of dimension d “over F1”, so their absolute prismatic
cohomology should be well-behaved. In this subsection, we provide some evidence for this heuristic. The
main computation is Example 9.6, showing that the Hodge-Tate stack of a possibly ramified extension of
Zp has a simple description.

Example 9.1 (The Hodge-Tate stack of a smooth Zp-scheme). Let k be a perfect field of characteristic p. Let
X be a smooth p-adic formal scheme overW (k). We shall describe the derived Hodge-Tate stack WCartHT

X

explicitly. Using Corollary 8.13, it in fact suffices to work with classical stacks. The diffracted Hodge stack
X /D (Construction 3.8) can be identified with the functor on p-nilpotent W (k)-algebras R given by

X /D(S) = X(W (S)/V (1)).

There is a natural map W (S)/V (1) → S given by restriction on the Witt vectors. This map realies
W (S)/V (1) as a square-zero extension of S by (BG]

a)(S); this can be checked directly, and also follows
from Construction 5.10 applied to the prism (W (k)Jp̃K, (p̃)) by Remark 5.5. Consequently, we learn as
in Proposition 5.12 that X /D → X is a T ]

X/W (k)-gerbe. In this description, the G]
m on X /D is given by

evident the G]
m-action on W (S)/V (1). Passing to quotients and using Construction 3.7, we learn that

WCartHT
X → X is a gerbe for the group scheme T ]

X/W (k) oG]
m, where G]

m acts on T ]
X/W (k) via its natural

linear action. If X is additionally endowed with a δ-structure, then this gerbe splits via Construction 3.11.
Consequently, for a smooth p-adic formal W (k)-scheme X equipped with a δ-structure, we learn that

WCartHT
X ' B(T ]

X/W (k) o G]
m). (6)

In particular, we remark that the group scheme appearing here is not commutative unless X has relative
dimension 0 over W (k).

Remark 9.2. In the context of Example 9.1, one can use the isomorphism (6) in conjunction with Propo-
sition 8.15 and linear algebra to obtain an explicit algebraic description of Hodge-Tate crystals of quasico-
herent complexes on X . For instance, a vector bundle on B(T ]

X/W (k) o G]
m) is given by a triple (E,ψ,Θ)

where
• E is a vector bundle on X .
• Θ : E → E is an OX -linear Sen operator (i.e., a map such that Θp − Θ is nilpotent on E/p, c.f.

Theorem APC.3.5.8 ).
• ψ : E → E ⊗OX

Ω1
X/W (k){−1} is a Θ-linear Higgs field which is nilpotent modulo p, with the

twist {−1} indicating that Θ acts by −1 on Ω1
X/W (k){−1}.

This description was recently also discovered in [19, 20] under the name of “enhanced Higgs bundles” in the
more general case where W (k)[1/p] is replaced by a possibly ramified discretely valued extension K/Qp

with perfect residue field; we expect that this stronger statement can also be proven using the geometric
approach used above by replacing G]

m with the group scheme G (which equals G]
a when K is ramified)

arising from the calculation in Example 9.6, but we do not pursue this idea further here.

For the rest of this section, we fix a complete noetherian regular local ringRwith perfect residue field k.
Let X = Spf(R). Our goal in this section is to describe the stack WCartHT

X → X explicitly. To formulate
the result, we need the following choice.

Notation 9.3. Choose a prism (A, I) and an isomorphism A ' R with R as chosen above. Such a choice
always exists by the Cohen structure theorem (see [3, Remark 3.11]). Note any suchA is necessarily formally
smooth overW :=W (k). Indeed,A is a p-complete regular local ring with residue field k sinceA is so. To
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conclude formal smoothness, it suffices to show that p /∈ m2
A, where mA ⊂ A is the maximal ideal, which is

clear as δ(p) ∈ A∗ while δ(m2
A) ⊂ mA.

Using this choice, we shall describe WCartHT
X explicitly as a quotient of the following:

Construction 9.4 (Parametrizing all Hodge-Tate points). Let F be the presheaf onR-algebras given by the
following: for any R-algebra S , let F(S) be the set of all A-module maps τ : I → W (S) rendering the
following diagram commutative

I
τ //

��

I ⊗A W (S)

��
A // W (S).

(7)

Here all maps except τ are the fixed standard ones. Moreover, there is a preferred point τ0 ∈ F(S) corre-
sponding to the map I → I ⊗A W (S) obtained by tensoring the standard map A → W (S) with I . The
presheaf F has the following structures:

(1) There is a natural action of G]
m =W ∗[F ] on F by acting via scalar multiplication on the Cartier–

Witt divisor I ⊗W W (S)→W (S) appearing in the right column of the square above.

(2) There is a natural action on HomA(I, I ⊗A W [F ]) ' HomR(I/I
2,G]

a{1}) ' G]
a on F : given

an A-module map a : I → I ⊗A W [F ](S) and a point τ : I → I ⊗A W (S) in F(S), the sum
τ + a : I → I ⊗A W (S) is the point a · τ of F(S). Moreover, acting through this action on the
point τ0 can be easily seen to give an isomorphism G]

a ' F of presheaves. Under this isomorphism,
the action in (1) is given as follows:

(t ∈ G]
m, a ∈ G]

a) 7→ t(a+ 1)− 1 ∈ G]
a.

In particular, it follows that the action in (1) turns F into a G]
m-torsor.

(3) There is a natural action of Der(A, I ⊗A W [F ]) ' HomR(Ω
1
A ⊗A R,G]

a{1}) ' T ]
A{1} ⊗A R on

F determined by the action in (2) via composition with the map

HomR(Ω
1
A ⊗A R,G]

a{1})→ HomR(I/I
2,G]

a{1})

obtained from I/I2
d−→ Ω1

A ⊗A R. Explicitly, given a derivation D : A → I ⊗A W [F ](S) and a
point τ : I → I ⊗A W (S) of F(S), the sum τ + (D|I) : I → I ⊗A W (S) is the point D · τ of
F(S).

One then checks that the actions in (1) and (3) assemble to an action of (T ]
A{1}⊗AR)oG]

m onF , where
the semidirect product is formed with respect to the standard multiplication action of G]

m on (T ]
A{1}⊗AR).

Proposition 9.5. There is a natural isomorphism WCartHT
X ' F/((T ]

A{1}⊗AR)oG]
m) of stacks overX .

Moreover, we have WCartHT
X ' BG, where

G = Stab
(T ]

A{1}⊗AR)oG]
m
(τ0 ∈ F).

In the proof below, we use the explicit model of 1-truncated animated rings given by [10]. Specifically,
we use the notion of “quasi-ideals” from [10, §3]

Proof. The commutative square in (7) appearing in the definition of a point τ ∈ F(S) can be regarded as
a map of quasi-ideals, and thus induces a map fτ : R ' A → W (S) of animated rings. The assignment
carrying τ to ((I ⊗A W (S)

std−−→ W (S)), fτ ) for varying S and τ then yields a map F → WCartHT
X .

Moreover, one checks that this map is naturally equivariant for the action of (T ]
A{1} ⊗A R) o G]

m on F ;
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the key point is that a derivation D : A→ I ⊗AW [F ](S) can be regarded as a homotopy between fτ and
fD·τ . Thus, we obtain an induced map

F/((T ]
A{1} ⊗A R)o G]

m)→WCartHT
X

of stacks over X . This map fits into the following commutative diagram of stacks over X :

F/(T ]
A{1} ⊗A R) //

��

X /D,A //

��

X

(id,ρA)

��

F/((T ]
A{1} ⊗A R)o G]

m) // WCartHT
X

can // X ×WCartHT = X ×BG]
m;

Here all squares are Cartesian, which defines the A-twisted version X /D,A of the diffracted Hodge stack
appearing in the top row. Explicitly, for any p-nilpotent R-algebra S , one has a square-zero extension
W (S)/IW (S) → S of S by BG]

a{1}(S) determined by the Hodge-Tate Cartier–Witt divisor IW (S) →
W (S) induced by I → A via base change along the δ-map A → W (S) adjoint to the composition A →
A/I ' R → S; the fibre of X /D,A(S) → X(S) over the structure map R → S (regarded as a point of
X(S)) is given by space of liftsR→W (S)/IW (S) ofR→ S. Using deformation theory as in Remark 5.11
as well as the explicit description of F , we see that first horizontal map F/(T ]

A{1} ⊗A R)→ X /D,A in the
top row is an isomorphism. By descent, the same holds true for the first horizontal map in the bottom row,
giving the first statement in the proposition. The second statement follows readily since we already know
that (T ]

A{1} ⊗A R)o G]
m (or even just the subgroup 1o G]

m) acts transitively on F . �

Example 9.6 (The Hodge-Tate stack of Spf(OK)). Assume further R is a p-torsionfree dvr, so R = OK

for a finite extension K/W (k)[1/p]. We shall describe the objects appearing in Proposition 9.5 explicitly
to conclude that WCartHT

X identifies with BG]
m (resp. BG]

a) as a stack over X if K is unramified (resp.
not unramified). Recalling that the Cartier dual of G]

a is the formal completion Ĝa of Ga at 0, we obtain
the following ramified version of Theorem APC.3.5.8 : for K ramified, the∞-category D̂crys(X�,O�) of
Hodge-Tate crystals of quasicoherent complexes on OK identifies with the full subcategory of D(OK [Θ])
spanned by those complexesK which are p-complete and such that Θ acts locally nilpotently onH∗(K/p).

Choosing a uniformizer π ∈ R, we obtain a Breuil-Kisin prism (A, I) = (W (k)JuK, E(u)) over R.
We already have F = G]

a as explained in Construction 9.4. Moreover, we can identify T ]
A{1} ' G]

a by
trivializing Ω1

A ' A · du and I/I2 ' A · E(u); the action of D ∈ G]
a ' T ]

A{1} on x ∈ F ' G]
a is then

given by D · x = x + E′D, where E′ = dE
du ∈ A. Using the explicit formula for the G]

m-action discussed
in Construction 9.4, it follows that

WCartHT
Spf(R) = BG

where
G = {(a, t) ∈ G]

a o G]
m | t− 1 = E′a}.

We now have two cases:
• If K is absolutely unramified (i.e., E′ is a unit), the projection to the second component identifies
G with G]

m, so WCartHT
X = X ×BG]

m.
• Via projection to the first component, one sees that G identifies as a scheme with G]

a, with group
structure ∗ given by

a ∗ b = a+ b+ E′ab.

If K is ramified, then E′ is not a unit, so (E′)n → 0 p-adically; one then checks that the maps

G]
a → G given by x 7→ eE

′x − 1

E′ =
∑
n≥1

(E′)n−1x
n

n!
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and
G→ G]

a given by a 7→ log(E′a+ 1)

E′ =
∑
n≥1

(−E′)n−1x
n

n

give mutually inverse isomorphisms of group schemes, whence WCartHT
X = X ×BG]

a.

Remark 9.7. Take R = OK as in Example 9.6; assume that K is not unramified. We have seen that
WCartHT

X = BG for a group schemeG that is isomorphic to G]
a and comes equipped with a projectionG→

G]
m. Unwrapping the construction, the resulting map WCartHT

X = BG → BG]
m × X can be identified

with the canonical map WCartHT
X →WCartHT×X , provided we identify WCartHT×X with BG]

m×X
using the map X → WCartHT arising from (Hodge-Tate) Cartier-Witt divisor

(
W (−) E−→W (−)

)
on

OK -algebras7. In explicit terms, the map WCartHT
X → WCartHT×X is now identified as the map on

classifying stacks induced by the homomorphism

G]
a → G]

m given by x 7→ 1 + E′ · e
E′x − 1

E′ = eE
′x.

Using this observation, one can show that �OK
{n} ' OK/nE′[−1] for all n ≥ 0.

7Beware that this might not agree with the standard identification WCartHT×X = BG]
m × X coming from(

W (−) V (1)−−−→W (−)
)

if the image of E ∈ W (OK) does not have the form uV (1) = V Fu for a unit u ∈ W (OK). This

problem disappears if we base change toOC as we can then replace E with p̃.
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10. Some questions on the Hodge-Tate stack and regularity

In this section, we record two questions motivated by the heuristic idea of regarding prismatic cohomol-
ogy as being related to de Rham cohomology “over F1”. More precisely, they are motivated by regarding
Hodge-Tate cohomology as a version of Hodge cohomology “over F1”.

The first conjecture, which ought to be accessible through a better understanding of the group scheme
G from Proposition 9.5, tries to capture the heuristic that regular rings are formally smooth “over F1”.

Conjecture 10.1 (Cohomological dimension of the Hodge-Tate stack of a regular ring). LetR be a p-complete
noetherian regular local ring with perfect residue field. The functor R�(WCartHT

Spf(R),−) (or equivalently
R�(BG,−) for G as in Proposition 9.5) carries D≤0 to D≤dim(R).

Remark 10.2. If dim(R) = 1, Conjecture 10.1 follows from from our previous results. Indeed, if R is p-
torsionfree, one uses Example 9.6. On the other hand, if R is a regular Fp-algebra, then one can use the
identification WCartHT

Spf(R) ' WCartHT
Spf(R)/Zp

from Remark 5.3 together with Proposition 5.12 to settle
the case where R is smooth over Fp; the general case can be deduced from this one by a limit argument.

Remark 10.3. For R as in Conjecture 10.1, it would be interesting to recover the vector bundles studied in
the recent works [22, 11, 12] explicitly from WCartHT

Spf(R).

The following (somewhat optimistic) conjecture gives a strong converse to the previous one:

Conjecture 10.4 (A regularity criterion via the Hodge-Tate stack). Let X be a noetherian excellent p-adic
formal scheme. Write WCartHT

X for the derived Hodge-Tate stack of X (i.e., the Hodge–Tate locus in
WCartX as defined in Definition 7). The following are equivalent:

(1) X is regular.
(2) The Hodge-Tate structure map π : WCartHT

X → X is a gerbe for a p-completely flat X-group
scheme (and thus WCartHT

X and WCartX are both classical).
(3) There exists an integer N such that the bifunctor Ext>N

WCartHT
X

(−,−) vanishes on p-torsion quasi-

coherent sheaves on WCartHT
X .

Example 10.5 (Part of conjecture 10.4 for hypersurface singularities). LetW be a p-complete and p-torsionfree
dvr with perfect residue field. LetA =W Jx1, ..., xnK, and letR = A/J whereJ = (g) for some 0 6= g ∈ A.
Write X = Spf(R), and assume that WCartHT

X → X is a gerbe for a flat X-group scheme. We shall check
that R is regular.

Choose a δ-structure on A; using this choice, for any R-algebra S , we can regard W (S) as a δ-A-algebra
compatibly with theA-algebra structure onA. Write k for the residue field ofR. Let F be the presheaf on
k-algebras given by the following: for any R-algebra S , let F(S) be the set of all A-module maps τ : J →
W (S) rendering the following diagram commutative

J = (g)
τ //

std
��

W (S)

V (1)(=p)

��
A

ξ // W (S).

(8)

Here ξ is the δ-lift of the standard map A→ R → S. Moreover, there is a preferred point τ0 ∈ F(k) cor-
responding to the map J → W (k) induced by the map R → k ' W (k)/LV (1) of A-algebras. Following
arguments used to prove Proposition 9.5, one then checks the folowing:

(1) There is a natural action of HomA(J,G]
a) on F via additive translations (using the embedding

G]
a = W [F ] ⊂ W (−)). Via this action, the presheaf F is a torsor for HomA(J,G]

a) ' G]
a, and is

trivlalized by τ0.
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(2) There is a natural map F → X /D ×X Spec(k): each square as in (8) induces a map A/J →
W (S)/LV (1) of animated rings.

(3) The group scheme T ]
A ' HomA(Ω

1
A/W ,G

]
a) ' (G]

a)n acts onF through the action in (1) using the

homomorphism HomA(Ω
1
A/W ,G

]
a)

d∨−→ HomA(J,G]
a).

(4) The standard G]
m-action on the quasi-ideal

(
W (S)

V (1)−−−→W (S)

)
induces an action on F .

(5) The actions in (3) and (4) amalgamate to an action of T ]
A o G]

m on F . Moreover, the map in (2)
yields an isomorphism

F/(T ]
A o G]

m) '
(
X /D ×X Spec(k)

)
/G]

m 'WCartHT
X ×XSpec(k).

Using this discussion and unwinding definitions, we learn that the k-stack WCartHT
X ×XSpec(k) is the

quotient of G]
a by an action of (G]

a)n o G]
m, where the action of the i-th basis vector in (G]

a)n is additive
translation by ∂g

∂xi
, while the action of the t ∈ G]

m(S) on the point 0 ∈ G]
a(S) is given via

t · 0 = (t− 1)τ0(g) ∈W [F ](S) = G]
a(S) ⊂W (S),

so the G]
m-orbit of 0 coincides with the subideal G]

a · τ0(g) ⊂ G]
a (inside W (−)). We are assuming that

WCartHT
X → X is a gerbe, so the action of (G]

a)n o G]
m on G]

a is assumed to be transitive. If one of the
derivatives ∂g

∂xi
∈ k is nonzero, then this action is clearly transitive, and also R is formally smooth over W

by the Jacobian criterion, so we are done. If ∂g
∂xi

= 0 in k for all i, then the (G]
a)n factor is acting trivially,

so the transitivity assumption translates to the statement that the inclusion

G]
a · τ0(g) ⊂ G]

a

of ideals of W (−) is an equality. But this can only happen if τ0(g) is a unit: scalar multiplication gives
an isomorphism of rings Ga ' EndW (G]

a) (see [8, Lemma 3.8.1 (ii)]) and thus identifies units in Ga with
automorphisms of G]

a. Now τ0(g) is a unit exactly when ξ(g) = τ0(g)V (1) ∈ W (k) is a unit multiple
of V (1), which in turn is equivalent to g ∈ A being distinguished. But it is easy to see then that R =
A/(g) must be regular: if g ∈ (p, x1..., xn)

2, then its image in W (k) would lie in (p2), which violates the
distinguishedness.

Remark 10.6. It seems plausible that the equivalence of (1) and (2) in Conjecture 10.4 is related to the mixed
characteristic Jacobian criterion for regularity proven in [12].
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Appendix A. Animated δ-rings

In this appendix, we introduce a notion of animated δ-ring, which plays an important background role
in several parts of this paper. Motivated by the relationship between Joyal’s classical theory of δ-rings [13]
and Frobenius lists, we define an animated δ-ring to be an animated ring R equipped with a lift of the
Frobenius endomorphism on R⊗L

Z Fp (Definition A.11). Using this definition, we check that the resulting
∞-category is obtained by “animating” the classical notion of a δ-ring (Remark A.22), justifying the name
“animated δ-ring”; the latter approach is the one adopted in other places, such as [17] and also implicitly in
various arguments of [3]. We begin with a brief digression concerning Witt vectors.

Notation A.1 (Derived Functors of Witt Vectors). Fix an integer n ≥ 0. Let us regard the functor R 7→
Wn(R) as a functor from the ordinary category of commutative rings to itself. Applying Proposition
APC.A.5 , we deduce that there is an essentially unique endofunctor of the∞-category CAlgan which com-
mutes with sifted colimits and which coincides with Wn on the category PolyZ of finitely generated poly-
nomial algebras over Z. We will (temporarily) denote this endofunctor by LWn : CAlgan → CAlgan (see
Notation A.5 below).

Let R be an animated commutative ring. We let [R] denote the mapping space HomCAlgan(Z[x], R),
which we refer to as the underlying space of R. In particular, if R is a commutative ring, then [R] denotes
its underlying set. The construction R 7→ [R] determines a functor from CAlgan to the∞-category S of
spaces which commutes with sifted colimits.

Remark A.2 (Witt Components). Let n ≥ 0 be an integer. Let us regard the constructions R 7→ [R] and
R 7→ [LWn(R)] as functors from the ∞-category of animated commutative rings to the ∞-category of
spaces. Both of these functors commute with sifted colimits, and are therefore left Kan extensions of their
restriction to the category of finitely generated polynomial algebras over Z (see Remark APC.A.6 ). It
follows that, for 0 ≤ m < n, there is an essentially unique natural transformation

compm : [LWn(R)]→ [R]

with the following property:
• When R is a finitely generated polynomial algebra over Z, the morphism compm : Wn(R) → R

carries a Witt vector
∑n−1

i=0 V
i[ai] to its mth Witt component am.

We will refer to the morphism compm as the mth Witt component.

Proposition A.3. Let R be an animated commutative ring. For every integer n ≥ 0, the Witt component
maps {compm}0≤m<n induce a homotopy equivalence [LWn(R)]→ [R]n.

Proof. Since the functors R 7→ [LWn(R)] and R 7→ [R]n commute with sifted colimits, we may assume
without loss of generality thatR is a finitely generated polynomial algebra over Z. In this case, the relevant
map has an explicit inverse, given by the function

Rn →Wn(R) (a0, a1, · · · , an−1) 7→
∑

V i[ai].

�

Corollary A.4. Let n ≥ 0 be an integer. For every commutative ring R, there is a canonical isomorphism
LWn(R) ' Wn(R), which is determined by the requirement that it depends functorially on R and coin-
cides with the identity map when R is a finitely generated polynomial algebra over Z.

Proof. By virtue of Remark APC.A.6 , there is an essentially unique natural transformationαR : LWn(R)→
Wn(R) which coincides with the identity when R is a finitely generated polynomial algebra over Z. We
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have a commutative diagram of sets

[LWn(R)]

{compm}0≤m<n

##

[αR] // [Wn(R)]

∑
V i[ai]7→(a0,a1,··· ,an−1)

{{
[R]n.

Proposition A.3 guarantees that the left vertical map is an isomorphism. Since the right vertical map is an
isomorphism, it follows that αR is also an isomorphism. �

Notation A.5. Let R be an animated commutative ring. For n ≥ 0, we write Wn(R) for the animated
commutative ring LWn(R) introduced in Notation A.1. We will refer to Wn(R) as the Witt vectors of
R of length n. By virtue of Corollary A.4, this agrees with the usual definition in the case where R is a
commutative ring.

Example A.6. For every animated commutative ring R, we have a canonical isomorphism W1(R) ' R.

Remark A.7 (Restriction Maps). Let R be an animated commutative ring. For every n ≥ 0, there is a
restriction map Res : Wn+1(R) → Wn(R), which is determined (up to homotopy) by the requirement
that it depends functorially on R and coincides with the usual restriction map

n∑
i=0

V i[ai] 7→
n−1∑
i=0

V i[ai]

when R is a commutative ring. We therefore obtain a tower of animated commutative rings

· · · →W3(R)→W2(R)→W1(R) ' R.

We letW (R) denote the limit of this tower (formed in the∞-category CAlgan). We will refer toW (R) as
the Witt vectors of R.

Warning A.8. The construction R 7→ W (R) determines an endofunctor of the ∞-category CAlgan of
animated commutative rings. This endofunctor cannot be obtained directly from Proposition APC.A.5 ,
since it does not commute with filtered colimits. However, the Witt components of Remark A.2 supply a
natural homotopy equivalence of [W (R)] with the infinite product

∏
n≥0[R]. It follows that the functor

R 7→ W (R) commutes with the formation of geometric realizations, and is therefore a left Kan extension
of its restriction to the ordinary category of commutative rings.

Remark A.9 (Ghost Components). Let R be an animated commutative ring. For every pair of integers
0 ≤ m < n, there is a morphism of animated commutative rings γm : Wn(R) → R, which is determined
(up to homotopy) by the requirement that it depends functorially on R and that it coincides with the
homomorphism

n−1∑
i=0

V i[ai] 7→
m∑
i=0

piap
m−i

i

when R is a commutative ring. We will refer to γm as the mth ghost component.
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Remark A.10. LetR be a commutative ring. For each element x ∈ R, let x denote its image in the quotient
ring R/pR. We then have a commutative diagram σR :

W2(R)
γ1 //

Res

��

R

x 7→x

��
R

x 7→xp
// R/pR.

When R is p-torsion-free, this diagram is a pullback square.
Applying Proposition APC.A.5 , we see that the functor R 7→ σR has a nonabelian left derived functor,

which carries each animated commutative ring R to a diagram of animated commutative rings LσR:

W2(R)
γ1 //

Res

��

R

can

��
R

Frob // Fp⊗LR.

This construction has the following features:
• The animated commutative ring Fp⊗LR is the coproduct of Fp with R in the∞-category CAlgan.

When R is an ordinary commutative ring, there is a canonical map Fp⊗LR→ R/pR, which is an
isomorphism if and only if R is p-torsion-free.
• The morphism can : R→ Fp⊗LR is given by the inclusion of the second factor.
• The morphism Frob : R → Fp⊗LR is uniquely determined by the requirement that it depends

functorially on R and coincides with the homomorphism x 7→ xp when R is a p-torsion-free com-
mutative ring.
• When R is a p-torsion-free commutative ring, the diagram LσR agrees with σR (up to canonical

isomorphism).
• The diagram LσR is always a pullback square (in the∞-category CAlgan).

Definition A.11 (Animated δ-Rings). Let A be an animated commutative ring. A δ-structure on A is a
section of the restriction map Res : W2(A)→ A. An animated δ-ring is an animated commutative ring A
together with a δ-structure on A. More precisely, an animated δ-ring is a commutative diagram

W2(A)

Res

!!
A

==

idA
// A

in the∞-category CAlgan, where the horizontal morphism is an identity morphism and the right vertical
map is given by the construction of Remark A.7.

Example A.12 (δ-Structures on Commutative Rings). Let A be a commutative ring. In the category of sets,
every section of the restriction map Res : W2(A) → A is given by x 7→ [x] + V [δA(x)] for a unique
function δA : A → A. The function δA determines a δ-structure on A (in the sense of Definition A.11) if
and only if the construction x 7→ [x] + V [δA(x)] is a ring homomorphism. Concretely, this is equivalent
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to the requirement that δA satisfies the identities

δA(x+ y) = δA(x) + δA(y)− (p− 1)!
∑

0<i<p

xi

i!

yp−i

(p− i)!

δA(1) = 0 δA(xy) = xpδA(y) + ypδA(x) + pδA(x)δA(y).

(9)

Consequently, when restricted to commutative rings, Definition A.11 recovers the usual notion of δ-structure
(originally introduced by Joyal in ***).

Remark A.13. Let A be an animated δ-ring, so that the restriction map Res :W2(A)→ A is equipped with
a section s : A→W2(A). We write δA for the composite map

[A]
[s]−→ [W2(A)]

comp1−−−→ [A].

WhenA is a commutative ring, this agrees with the function described in Example A.12, which completely
determines the δ-structure on A. Beware that, in general, this is no longer true.

Remark A.14. Let A be an animated δ-ring, so that the restriction map Res : W2(A) → A is equipped
with a section s : A → W2(A). By Proposition A.3, the formation of W2(A) commutes with passing to
connected components: the natural map π0(W2(A)) → W2(π0(A)) is an isomorphism. Applying π0(−)
to the δ-structure on A then shows that π0(A) is also naturally an animated δ-ring, and that the natural
map A→ π0(A) is a map of δ-rings.

Remark A.15 (δ-Structures as Frobenius Lifts). Let A be an animated commutative ring. Using the pull-
back diagram described in Remark A.10, we see that δ-structures on A can be identified with commutative
diagrams

A

can

!!
A

ϕA

??

Frob // Fp⊗LA

in the∞-category CAlgan, where can : A→ Fp⊗LA is given by the inclusion of the second factor and Frob
is the Frobenius morphism of Remark A.10. Stated more informally, δ-structures on A can be identified
with pairs (ϕA, h), where ϕA : A→ A is a morphism of animated commutative rings and h is a homotopy
from can ◦ ϕA to Frob. In other words, a δ-structure on A is given by “lift” of the Frobenius morphism
Frob : A→ Fp⊗LA to an endomorphism of A (which we denote by ϕA and also refer to as the Frobenius
morphism of A).

Example A.16 (The Torsion-Free Case). Let A be a commutative ring which is p-torsion-free. Then a δ-
structure on A can be identified with a ring homomorphism ϕA : A→ A satisfying ϕA(x) ≡ xp (mod p)
for each x ∈ A (in this case, the homotopy h of Remark A.15 is essentially unique if it exists).

Remark A.17 (Perfect Animated δ-Rings). LetA be an animated δ-ring. The following conditions are equiv-
alent:

• The underlying animated commutative ring A is p-complete and the morphism ϕA : A → A of
Remark A.15 is an isomorphism.
• There exists an isomorphism of animated δ-rings A 'W (k), where k is a perfect Fp-algebra.
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The collection of animated δ-rings forms an∞-category which we will denote by δCAlgan and refer to
as the∞-category of animated δ-rings. It is characterized formally by the existence of a pullback diagram

δCAlgan //

��

CAlgan

A 7→(idA,Res)

��
Fun({0 < 1 < 2},CAlgan) // Fun({0 < 2},CAlgan)×CAlgan Fun({1 < 2},CAlgan).

(10)

It follows from Example A.12 that the ordinary category of δ-rings can be identified with a full subcategory
of δCAlgan, spanned by those animated δ-rings for which the underlying animated commutative ring is
discrete.

Example A.18 (Polynomial δ-Rings). LetA = Z[xi]i∈I be a polynomial ring on a set of generators {xi}i∈I .
For every collection of elements {ai}i∈I of A, there is a unique δ-structure on A satisfying δA(xi) = ai.
This follows from Example A.16, taking ϕA to be the endomorphism of A given by the formula ϕA(xi) =
xpi + pai. For any animated δ-ring B, the mapping space HomδCAlgan(A,B) can be identified with the
equalizer of the diagram

HomCAlgan(A,B)
f 7→{δB(f(xi))}i∈I //

f 7→{f(δA(xi))}
// [B]I .

Example A.19 (The Free δ-Ring). Let A = Z[x0, x1, x2, . . .] denote the polynomial ring on a countably
infinite set of variables. Then A is a p-torsion-free commutative ring equipped with a lift of Frobenius
ϕA, given by the construction ϕA(xi) = xpi + pxi+1. For any animated δ-ring B, Example A.18 identifies
HomδCAlgan(A,B) with the equalizer of a diagram∏

n≥0[B]
//
//
∏

n≥0[B],

where the upper map is given by applying δB to each factor and the lower vertical map is given by the shift
(b0, b1, · · · ) 7→ (b1, b2, b3, · · · ). It follows that the tautological map

HomδCAlgan(A,B)→ HomCAlgan(Z[x0], B) = [B]

is a homotopy equivalence. Stated more informally, A is the free animated δ-ring on the generator x0.

Proposition A.20. (1) The∞-category δCAlgan admits small limits and colimits.
(2) The forgetful functor Forget : δCAlgan → CAlgan preserves small limits and colimits.
(3) The functor Forget admits a left adjoint Free : CAlgan → δCAlgan.
(4) The∞-category δCAlgan can be identified with the∞-category of algebras over the monad Forget◦

Free : CAlgan → CAlgan.

Proof. Assertions (1) and (2) are essentially formal. To prove (3), we must show that for every animated
commutative ringR, there exists an animated commutative δ-ring Free(R) which corepresents the functor

CAlgan → S A 7→ HomCAlgan(R,Forget(A)).

By virtue of (1), the collection of objects R ∈ CAlgan which satisfy this condition is closed under the
formation of colimits. It will therefore suffice to treat the case where R = Z[x] is a polynomial ring on a
single generator. In this case, the desired result follows from Example A.19. Assertion (4) now follows by
combining (1), (2), and (3) with the∞-categorical Barr-Beck theorem. �

Example A.21. Let {xi}i∈I be a set of variables and let Z[xi]i∈I denote the associated polynomial ring. Then
the functor Free : CAlgan → δCAlgan of Proposition A.20 carries Z[xi]i∈I to the free δ-ring Z{xi}i∈I
generated by the variables {xi}i∈I , given (as a commutative ring) by the polynomial ring on generators
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{δn(xi)}i∈I,n≥0. To prove this, we can assume without loss of generality that the set I is a singleton, in
which case the desired result follows from Example A.19.

For any animated δ-ring B, we have homotopy equivalences

HomδCAlgan(Z{xi}i∈I , B) ' HomCAlgan(Z[xi]i∈I , B) ' [B]I .

In particular, if the set I is finite, then the functor B 7→ HomδCAlgan(Z{xi}i∈I , B) commutes with sifted
colimits: that is, Z{xi}i∈I is a compact projective object of the∞-category δCAlgan.
Remark A.22 (The Universal Property of δCAlgan). Let δPoly denote the full subcategory of δCAlgan

spanned by the finitely generated free δ-rings (that is, δ-rings of the form Z{x1, x2, · · · , xn} for some
n ≥ 0). Proposition A.20 implies that δCAlgan is generated by δPoly under sifted colimits. Since each
object of δPoly is a compact projective object of δCAlgan (Example A.21), it follows that δCAlgan is freely
generated by δPoly under sifted colimits. That is, if C is an∞-category which admits sifted colimits, then
every functor F : δPoly→ C admits an essentially unique extension LF : δCAlgan → C which commutes
with sifted colimits (see Proposition 5.5.8.15 of [15]).

The forgetful functor of Proposition A.20 also has a right adjoint.
Proposition A.23. (1) The forgetful functor Forget : δCAlgan → CAlgan has a right adjoint Cofree :

CAlgan → δCAlgan.
(2) The composite functor

CAlgan Cofree−−−→ δCAlgan Forget−−−→ CAlgan

is isomorphic to the Witt vector functor R 7→W (R) of Remark A.7.
(3) The ∞-category δCAlgan can be identified with the ∞-category of algebras over the comonad

Forget ◦ Cofree : CAlgan → CAlgan.
Remark A.24. We can summarize Proposition A.23 more informally as follows:

• For every animated commutative ring R, the animated commutative ring W (R) carries a natural
δ-structure.
• If A is an animated δ-ring, then there is a canonical homotopy equivalence

θ : HomδCAlgan(A,W (R)) ' HomCAlgan(A,R).

Concretely, the homotopy equivalence θ is given by composition with the restriction map Res :W (R)→
R.
Proof of Proposition A.23. Assertion (1) follows from the adjoint functor theorem, and assertion (3) from
the∞-categorical Barr-Beck theorem. We will prove (2). Let us denote the composite functor Forget ◦
Cofree by W ′ : CAlgan → CAlgan. For every commutative ring R, the ring of Witt vectors W (R) is
equipped with a δ-structure, so the restriction map Res :W (R)→ R is classified by a morphism of animated
δ-rings αR :W (R)→ Cofree(R) which we can identify with a morphism of animated commutative rings
βR : W (R) → W ′(R). Since the functor W is a left Kan extension of its restriction to the ordinary
category of commutative rings (Warning A.8), the construction R 7→ βR admits an essentially unique
extension to a natural transformation β :W →W ′ (defined on the∞-category CAlgan). To complete the
proof, it will suffice to show that β is an isomorphism.

For every animated commutative ring R, we have canonical homotopy equivalences
[W ′(R)] = HomCAlgan(Z[x],W ′(R))

= HomCAlgan(Z[x],Forget(Cofree(R)))
' HomδCAlgan(Z{x},Cofree(R))
' HomCAlgan(Z{x}, R)

'
∏
n≥0

[R].
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It follows that the functor W ′ commutes with geometric realizations of simplicial objects, and is therefore
a left Kan extension of its restriction to the ordinary category of commutative rings. Consequently, to
show that βR :W (R)→W ′(R) is an isomorphism, we may assume without loss of generality thatR is an
ordinary commutative ring. In this case, we wish to show thatαR :W (R)→ Cofree(R) is an isomorphism
of animated δ-rings. Equivalently, we wish to show that for every animated δ-ringA, composition with αR

induces a homotopy equivalence.
HomδCAlgan(A,W (R))→ HomδCAlgan(A,Cofree(R)) ' HomCAlgan(A,R).

SinceR andW (R) are discrete, we can assume without loss of generality thatA is discrete. In this case, the
desired result follows from the universal property of δ-structure on W (R) (see [13, §2]). �
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